-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcdag_v4.py
1556 lines (1332 loc) · 45.6 KB
/
cdag_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import math
import matplotlib.pyplot as plt
from functools import partial
import copy
import random
from itertools import chain
# import DAG model
'''
#尝试用oop思想来构造DAG,过程复杂
task_set1:
(0)
/ | \
/ | \
/ | \
/ | \
(1) (2)—— ——(3)
\ / \ /
\ / \ /
\ / (5)
(4) /
\ /
\ /
(6)
task_set2:
(0)
/ \
/ \
/ \
/ \
(1)—— —— —— (2)
/ \
/ \
/ \
(3) (4)
'''
task_set = [0, 1, 2, 3, 4, 5, 6]
task_set1 = [0, 1, 2, 3, 4]
#计算开销矩阵
w = [[14, 16, 9],
[13, 19, 18],
[11, 13, 19],
[13, 8, 17],
[12, 13, 10],
[13, 16, 9],
[7, 15, 11]]
w1 = [[15, 18, 8],
[12, 18, 16],
[11, 15, 18],
[12, 8, 20],
[8, 10, 12]]
#处理器选择
x = [[1, 1, 0, 1, 0, 1, 1],
[0, 1, 1, 1, 0, 1, 1],
[0, 1, 1, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 0, 1, 0, 1],
[1, 0, 1, 1, 0, 1, 1]]
x1 = [[0, 1, 1, 0, 1],
[0, 0, 1, 1, 1],
[0, 1, 1, 1, 1],
[1, 1, 1, 0, 1],
[1, 0, 1, 1, 0]]
#通信开销矩阵
c = [[0, 18, 9, 14, 99, 99 , 99],
[99, 0, 99, 99, 16, 99, 99],
[99, 99, 0, 99, 18, 22, 99],
[99, 99, 11, 0, 99, 15, 99],
[99, 99, 99, 99, 0, 99, 7],
[99, 99, 99, 99, 99, 0, 9],
[99, 99, 99, 99, 99, 99, 0]
]
c1 = [[0, 8, 12, 99, 99],
[99, 0, 99, 15, 20],
[99, 16, 0, 99, 99],
[99, 99, 99, 0, 99],
[99, 99, 99, 99, 0]
]
#深度开销矩阵
d = []
#调度时间长度
T = dict()
def max_depth():
#遍历图,找到每一个最后结点,比较出最大的depth
pass
#仅求直接后继
def succ(c, node_id):
succ_list = []
for i in range(len(c[node_id])):
if (c[node_id][i]!= 0 and c[node_id][i]!= 99):
succ_list.append(i)
return succ_list
#仅求直接前驱
def pre(c, node_id):
pre_list = []
for i in range(len(c)):
if (c[i][node_id]!= 0 and c[i][node_id]!= 99):
pre_list.append(i)
return pre_list
#用于计算排好序中的任务节点的前驱
all_pre = []
def preb(list, c, node_post, task_order, node):
prelist = []
thrownlist = []
#只有第一次迭代的是完整的路径
for i in range(len(c)):
# if c[i][node_id] != 0 and c[i][node_id] != 99 and i in list[:node_id] and i != preblist[:][1]:
if c[i][node] != 0 and c[i][node] != 99:
if i in list[:node_post]:
#向上追溯
task_order.append((i,node))
prelist.append(i)
tasko = copy.deepcopy(task_order)
preb(list, c, node_post, task_order, i)
#向下追溯
#在每个分支时,将前面pre的顺序保存下来
del_front(tasko)
exe_branch(task_order, c, tasko, prelist, node)
else:
prelist.append(i)
thrownlist.append(i)
return task_order, thrownlist
def preb_1(list, c, node_id, task_order, node):
prelist = []
thrownlist = []
'''
if c[:][node] == 0 or c[:][node] == 99 :
task_order.append((0,node))
#return task_order
'''
for i in range(len(c)):
if c[i][node] != 0 and c[i][node] != 99:
task_order.append((i,node))
prelist.append(i)
tasko = copy.deepcopy(task_order)
#prebcost = prebcost + c[i][node_id]
preb_1(list, c, node_id, task_order, i)
#向下追溯
#在每个分支时,将前面pre的顺序保存下来
del_front(tasko)
exe_branch(task_order, c, tasko, prelist, node)
#遇到是前驱但不在已执行结点队列中,该前驱结点依然需要记下来
return task_order
def del_front(tasko):
'''
在该点位置上保留下未递归完成的若干个后继结点
'''
for t in range(0, len(tasko)):
if t < len(tasko) and tasko[t][0] == 0:
del tasko[:t+1]
t = 0
def exe_branch(task_order, c, tasko, prelist, node):
'''
在寻找前继的递归过程中,当遇到该点后的某一前继分支递归结束,回到该点,
这时重新建立另一条前继路径,需要储存该点之前的若递归过的后继
'''
#约束应该加上所有的pre是否都遍历了
prel = pre(c, node)
if len(prel) > 1:
f = 0
for i in prel:
if i in prelist:
f = f + 1
if f != len(prel):
#记下之前的结束位置,递归中前面几个符合的结点先加入进去
for e in tasko:
#该结点还有其他前继
if e[1] != node :
task_order.append(e)
else:
break
def preb_2(list, c, node_id, task_order, node):
'''
version 3
'''
#print("结点:", node,"正在处理...")
#tasko = []
prelist = []
for i in range(len(c)):
if c[i][node] != 0 and c[i][node] != 99:
if i in list[:node_id]:
task_order.append((i,node))
prelist.append(i)
#print("添加结点进入taskorder:", task_order)
tasko = copy.deepcopy(task_order)
preb_2(list, c, node_id, task_order, i)
#在每个分支时,将前面pre的顺序保存下来
#print("分支判断的结点:", node)
#print("tasko:", tasko)
#处理一下tasko
for t in range(len(tasko)):
if t < len(tasko) and tasko[t][0] == 0:
del tasko[:t+1]
t = 0
#约束应该加上所有的pre是否都遍历了
prel = pre(c, node)
if len(prel) >1:
f = 0
for i in prel:
if i in prelist:
f = f + 1
if f == len(prel):
pass
else:
#记下之前的结束位置
for e in tasko:
if e[1] != node :
task_order.append(e)
else:
break
#print("通过分支判断后taskorder:", task_order)
return task_order
#获取结点ni的深度
def get_depth(c, ni, de, d=0):
pres = pre(c, ni)
if(pre(c, ni)):
d += 1
for i in pres:
get_depth(c, i, de, d)
else:
de.append(d)
def max_depth(ls):
max = 0
for i in ls:
if i > max:
max = i
return max
#获取节点的深度
'''
find the most depth road is difficult
so,wo try find depth of all node in road and find the max depth
'''
def depth(set, c):
de = [[],[],[],[],[],[],[],[],[],[],[],[],[]]
sub_l = []
for i in set:
get_depth(c, i, de[i])
print(de)
node_depth = []
for i in range(len(de)):
node_depth.append(max_depth(de[i]))
print(node_depth)
return node_depth
#DAG可靠性模型
def Nerror(n_i, p_u):
#任务i发生故障的均值
lamda = 1
nerror = math.exp(-lamda *w[n_i][p_u])
return nerror
#若考虑通信开销,设通信开销发生故障的概率也符合泊松分布
#nerror = math.exp(-lamda *(w[n_i][p_u]+c[n_i][])
'''
合成两个任务图
'''
def compound_G(taskset1, taskset2):
#将taskset2的所有节点重新标号,更改c矩阵
com_c = [0]
t1 = taskset1
t2 = taskset2
com = [[],[],[],[],[],[],[],[],[],[],[],[],[]]
com_w = [[],[],[],[],[],[],[],[],[],[],[],[],[]]
#合成任务列表
t1_len = len(t1)
for i in range(0, t1_len):
#len(t1) = t2在合成图中的开始坐标
com_c.append(i+1)
com_c_len = len(com_c)
t2_len = len(t2)
for i in range(0, t2_len):
#len(t2) = t2在合成图中的开始坐标
com_c.append(com_c_len+i)
print("initial:", com_c)
#创建一个合成图的通信开销矩阵
for i in range(0, len(com_c)):
for j in range(0, len(com_c)):
#13*13
if i == 0 :
if j == 1 or j == t1_len+1 :
com[i].append(1)
else:
com[i].append(99)
if(0 < i < t1_len+1 and j>= t1_len+1 and i != 0):
com[i].append(99)
if(i >= t1_len+1 and 0 <j< t1_len+1):
com[i].append(99)
if(0 < i < t1_len+1 and 0 < j < t1_len+1):
com[i].append(c[i-1][j-1])
if(i >= t1_len+1 and j >= t1_len+1):
com[i].append(c1[i-(t1_len+1)][j-(t1_len+1)])
if(i > 0 and j == 0):
com[i].append(99)
for i in com:
print(i[:])
print('\n')
#创建一个合成图的处理器开销矩阵
for j in range(0, len(com_c)):
for k in range(0, 3):
if j == 0:
com_w[j].append(0)
if 0 < j < t1_len+1:
com_w[j].append(w[j-1][k])
if j>= t1_len+1:
com_w[j].append(w1[j-(t1_len+1)][k])
return com_c, com, com_w, com_c_len
'''
根据深度分割任务图
'''
def cut_comG(task, loc, dep, c, w):
#合成图的深度矩阵重新分为两个图的深度矩阵
task1 = task[:loc]
task2 = task[loc:]
longlist = 0 if len(task1) > len(task2) else 1
dep1 = dep[:loc]
dep2 = dep[loc:]
print("tasks and depths:", task1, task2, dep1, dep2)
max_d1 = max(dep1)
max_d2 = max(dep2)
max_d = max_d1 if max_d1<max_d2 else max_d2
print("max depth:",max_d1, max_d2)
#条件队列
con_tasks1 = []
con_tasks2 = []
ucon_tasks = []
for i in task:
if dep[i] <= max_d and i in task1:
#创建一个子图满足深度的条件队列
con_tasks1.append(i)
elif dep[i] <= max_d and i in task2:
con_tasks2.append(i)
else:
#创建一个子图不满足深度的条件队列
ucon_tasks.append(i)
#根据两个列表创建通信矩阵
con_tasks = con_tasks1 + con_tasks2
print("con_task:", con_tasks1)
print("con_task2:", con_tasks2)
print(con_tasks)
#tasks_len = len(con_tasks1) + len(con_tasks2)
comcom = copy.deepcopy(c)
ucomcom = copy.deepcopy(c)
comp = copy.deepcopy(w)
ucomp = copy.deepcopy(w)
#com = [[0 for i in range(tasks_len)] for i in range(tasks_len)]
#uncom = [[0 for i in range(len(ucon_tasks))] for i in range(len(ucon_tasks))]
#满足深度的条件队列的通信开销矩阵
for t in task:
if t not in con_tasks:
for i in range(len(comcom[t])):
comcom[t][i] = 99
else:
for j in task:
if j not in con_tasks:
comcom[t][j] = 99
#不满足深度的条件队列的通信开销矩阵
for t in task:
if t not in ucon_tasks:
for i in range(len(ucomcom[t])):
ucomcom[t][i] = 99
else:
for j in task:
if j not in ucon_tasks:
ucomcom[t][j] = 99
#处理器开销矩阵
for t in task:
if t not in con_tasks:
for i in range(len(comp[t])):
comp[t][i] = 99
for t in task:
if t not in ucon_tasks:
for i in range(len(comp[t])):
ucomp[t][i] = 99
print("com:")
for i in comcom:
print(i[:])
print('\n')
print("ucom:")
for i in ucomcom:
print(i[:])
print('\n')
print("comp:")
for i in comp:
print(i[:])
print('\n')
print("ucomp:")
for i in ucomp:
print(i[:])
print('\n')
return con_tasks, ucon_tasks, comcom, ucomcom, comp, ucomp, longlist
def FCFS_schedule(set):
#先根据依赖关系排好序
task_set = set
#最早开始时间
EST = 0
#最晚结束时间
EFT = 0
per_task = task_set
per_task_all_cost = []
sum_cost = 0
task_cost_sum = []
#if (len(task_set) != 0 ):
#for i in range(len(self.task_pool)):
for i in range(len(task_set)):
print("process:")
max_cpu_cost = 0
for k in w[task_set[i]]:
if ( k > max_cpu_cost):
max_cpu_cost = k
if(i < len(task_set)-1):
if(c[task_set[i]][task_set[i+1]]!= 0 and c[task_set[i]][task_set[i+1]]!= 99):
#任务i的通信消耗+处理器消耗
cost = c[task_set[i]][task_set[i+1]] + max_cpu_cost
else:
cost = max_cpu_cost
else:
cost = max_cpu_cost
sum_cost = cost + sum_cost
per_task_all_cost.append(cost)
task_cost_sum.append(sum_cost)
#处理器开销最大的
#任务i的完成时间
allcost = sum(per_task_all_cost[:5])
print("all cost:",allcost)
#绘制cost,task线图
fig_FCFS_bar(per_task, per_task_all_cost)
fig_FCFS(per_task, task_cost_sum)
#print("task all cost:", task_all_cost)
def FCFS_schedule_1(set):
'''
添加了处理器选择,判断是否前后两个任务是否在同一处理器上
'''
#先根据依赖关系排好序
task_set = set
#最早开始时间
EST = 0
#最晚结束时间
EFT = 0
per_task = task_set
per_task_all_cost = []
sum_cost = 0
task_cost_sum = []
#if (len(task_set) != 0 ):
#for i in range(len(self.task_pool)):
for i in range(len(task_set)):
print("process:")
#随机选择一个处理器
k = random.randint(0,len(w[task_set[i]])-1)
print("k:", k)
if(i < len(task_set)-1):
if(c[task_set[i]][task_set[i+1]]!= 0 and c[task_set[i]][task_set[i+1]]!= 99 and x[task_set[i]][task_set[i+1]] == 1):
#任务i的通信消耗+处理器消耗
print("更换处理器", task_set[i],"到", task_set[i+1])
#当选择不同处理器时,通过左移或右移一个处理器
if k < len(w[task_set[i+1]])-1:
cost = c[task_set[i]][task_set[i+1]]*x[task_set[i]][task_set[i+1]] + w[task_set[i+1]][k+1]
else:
cost = c[task_set[i]][task_set[i+1]]*x[i][i+1] + w[task_set[i+1]][k-1]
print(cost)
else:
print("无需更换处理器", task_set[i],"到", task_set[i+1])
cost = w[task_set[i+1]][k]
print(cost)
else:
cost = w[task_set[i]][k]
sum_cost = cost + sum_cost
per_task_all_cost.append(cost)
task_cost_sum.append(sum_cost)
#处理器开销最大的
#任务i的完成时间
allcost = sum(per_task_all_cost[:5])
print("all cost:",allcost)
#绘制cost,task线图
fig_FCFS_bar(per_task, per_task_all_cost)
fig_FCFS(per_task, task_cost_sum)
#print("task all cost:", task_all_cost)
def random_Schedule(set, c, w):
'''
random number appear not only once
'''
seq = []
#cost = 0
step = 0
while step < len(set):
r = random.randint(0, len(set)-1)
if r not in seq:
seq.append(r)
step += 1
#if seq:
# cost += max(w[r]) + c[seq[-1]][r]
#elif step ==1 :
# cost += max(w[r])
print("initial list:", set)
print("random seq:", seq)
#print("cost:", cost)
return seq
def FCFS_m_schedule(set, c, w):
'''
多DAG FCFS
set: 任务列表
c:通信开销矩阵
w:处理器开销矩阵
cost equal 调度时间
'''
#先根据依赖关系排好序
task_set = set
FCFS_task = []
per_task = task_set
per_task_all_cost = []
sum_cost = 0
task_cost_sum = []
#if (len(task_set) != 0 ):
#for i in range(len(self.task_pool)):
for i in range(len(task_set)):
print("process:")
max_cpu_cost = 0
for k in w[task_set[i]]:
if ( k > max_cpu_cost):
max_cpu_cost = k
if(i < len(task_set)-1):
if(c[task_set[i]][task_set[i+1]]!= 0 and c[task_set[i]][task_set[i+1]]!= 99):
cost = c[task_set[i]][task_set[i+1]] + max_cpu_cost
else:
cost = max_cpu_cost
else:
cost = max_cpu_cost
sum_cost = cost + sum_cost
per_task_all_cost.append(cost)
task_cost_sum.append(sum_cost)
#处理器开销最大的
#任务i的完成时间
allcost = sum(per_task_all_cost[:5])
print("all cost:",allcost)
#显示调度时间
#Makerspan(set,c, w)
#绘制cost,task线图
fig_FCFS_bar(per_task, per_task_all_cost)
fig_FCFS(per_task, task_cost_sum)
#print("task all cost:", task_all_cost)
'''
# 将图中结点按前驱排序
# 只保证前驱在前,后继在后
'''
#sortlist:符合任务优先级的任务队列
sortlist = []
def SortList(set, set_g, nodei):
'''
set: initial set
set_g: 该任务列表的通信开销矩阵
nodei:指定节点
'''
set = set
preset = pre(set_g, nodei)
if (len(preset)):
'''
if(len(preset) == 1):
nodeid = pre(nodei)
SortList(set, nodeid[0])
else:
'''
for i in preset:
SortList(set,set_g, i)
if i not in sortlist:
'''
#忘了什么意思了
#for j in c[nodei]:
#
#if c[nodei][i] < j:
sortlist.append(i)
'''
sortlist.append(i)
else:
if nodei not in sortlist:
sortlist.append(nodei)
if nodei not in sortlist:
sortlist.append(nodei)
def wbar(ni, ps):
""" Average computation cost """
return sum(p for p in ps[ni]) / len(ps[ni])
def cbar(ni, nj, c, ps):
""" Average communication cost """
n = len(ps)
comsum = 0
if n == 1:
return 0
npairs = n * (n-1)
print("npairs:",npairs)
return 1. * sum(c[ni][nj] for a1 in range(0,len(ps[ni])) for a2 in range(0,len(ps[nj]))
if a1 != a2 and c[ni][nj] != 99) / npairs
job_v = []
rank_v = []
def ranku(ni, cc, ps):
'''
ni: 指定节点
'''
#偏函数,类似于java中的多态
rank = partial(ranku, cc=cc, ps=ps)
wf = partial(wbar, ps=ps)
cf = partial(cbar,c =cc, ps=ps)
rank_value = 0
if len(pre(cc, ni)):
rank_value = wf(ni) + max(cf(ni, nj) + rank(nj) for nj in pre(cc, ni))
print("task prior ->", ni)
print("rank_value:",rank_value)
job_v.append(ni)
rank_v.append(rank_value)
return rank_value
else:
print("/start//")
print("task prior ->", ni)
rank_value = wf(ni)
print("rank_value:",rank_value)
job_v.append(ni)
rank_v.append(rank_value)
return wf(ni)
cjob_v = []
crank_v = []
def cwbar(ni, ps):
""" Average computation cost """
return sum(p for p in ps[ni]) / len(ps[ni])
def ccbar(ni, nj, c, ps):
""" Average communication cost """
n = len(ps[ni])
comsum = 0
if n == 1:
return 0
npairs = n * (n-1)
#a1与a2表示处理器的选择
return 1. * sum(c[ni][nj] for a1 in range(0,len(ps[ni])) for a2 in range(0,len(ps[nj]))
if a1 != a2 and c[ni][nj] != 99) / npairs
#深度相关的任务调度的任务优先级排序
def cranku(ni, c, crps):
'''
ni: 指定节点
'''
#偏函数,类似于java中的多态
crank = partial(cranku, c=c, crps=crps)
wf = partial(cwbar, ps=crps)
cf = partial(ccbar, c=c, ps=crps)
rank_value = 0
if len(pre(c, ni)):
rank_value = wf(ni) + max(cf(ni, nj) + crank(nj) for nj in pre(c, ni) )
print("task prior ->", ni)
print("rank_value:",rank_value)
if ni not in cjob_v:
cjob_v.append(ni)
crank_v.append(rank_value)
return rank_value
else:
print("/start/")
print("task prior ->", ni)
rank_value = wf(ni)
print("rank_value:", rank_value)
if ni not in cjob_v:
cjob_v.append(ni)
crank_v.append(rank_value)
return rank_value
def HEFT_schedule(jobs, c, w):
rank = partial(ranku, cc=c, ps=w)
print("initial jobs:", jobs)
sort_jobs = sorted(jobs, key=rank)
#sort_jobs.reverse()
print("heft sort jobs:",sort_jobs)
fig_HEFT_bar(job_v, rank_v)
print("job_v:", job_v)
print("rank_v:", rank_v)
return sort_jobs
#CHEFT 深度相关的任务调度
def CHEFT_schedule(jobs, cg, wg):
rank = partial(cranku, c=cg, crps=wg)
flag = 0
for i in jobs:
for j in wg[i]:
if jobs == 99:
flag += 1
if flag == len(jobs):
del jobs[i]
print("initial jobs:", jobs)
sort_jobs = sorted(jobs, key=rank)
print("cheft sort jobs:",sort_jobs)
#fig_HEFT_bar(sort_jobs, crank_v)
print("job_v:", cjob_v)
print("rank_v:", crank_v)
return sort_jobs
def fig_FCFS_bar(x, y):
fig = plt.Figure()
#plt.ylim(0.0,1.0)
plt.bar(x, y)
#plt.plot(x, y)
plt.xlabel('task number')
plt.ylabel('cost ')
plt.show()
def fig_FCFS(x, y):
fig = plt.Figure()
#plt.xlim(0,500)
#plt.ylim(0.0,1.0)
plt.plot(x, y)
plt.xlabel('task number')
plt.ylabel('cost ')
plt.show()
def fig_HEFT_bar(x, y):
fig = plt.Figure()
#plt.ylim(0.0,1.0)
if x and y:
plt.bar(x, y)
#plt.plot(x, y)
plt.xlabel('task number')
plt.ylabel('priority ')
plt.show()
def eft_gent(eft_time):
#处理eft_time
eft = []
#temp相当于一个栈
temp = []
#用来判断初次序号不同的标记
flag = 0
for i in range(len(eft_time)):
if i != 0 and i < len(eft_time):
if eft_time[i-1][0] == eft_time[i][0]:
if eft_time[i-1] in eft:
flag = 1
temp.append(eft_time[i])
elif eft_time[i-1][0] != eft_time[i][0] and temp:
max = 0
#选择路径最长的作为该结点调度长度
for j in range(len(temp)):
if j == 0:
max = temp[j][1]
if temp[j-1][1] > temp[j][1]:
max = temp[j-1][1]
else:
max = temp[j][1]
if flag == 0:
eft.append((eft_time[i-1][0], max))
eft.append(eft_time[i])
del temp[:]
flag = 0
elif eft_time[i-1][0] != eft_time[i][0]:
eft.append(eft_time[i])
elif i == 0:
if (eft_time[i][0] == eft_time[i+1][0]):
temp.append(eft_time[i])
else:
eft.append(eft_time[i])
return eft
#公平性
def Speedrate(node_i, Gm, gm_c, gm_w, G, g_c, g_w):
speedrate = 0
time1 = 0
time1_1 = 0
time2 = 0
time2_1 = 0
eft_time1, eft_time1_1 = Makerspan(Gm, gm_c, gm_w)
eft_time2, eft_time2_1 = Makerspan(G, g_c, g_w)
#print("eft_time1:", eft_time1)
#print("eft_time1_1:", eft_time1_1)
#print("eft_time2:", eft_time2)
#print("eft_time2_1:", eft_time2_1)
eft1 = eft_gent(eft_time1)
eft1_1 = eft_gent(eft_time1_1)
eft2 = eft_gent(eft_time2)
eft2_1 = eft_gent(eft_time2_1)
#print("eft1:", eft1)
#print("eft1_1:", eft1_1)
#print("eft2:", eft2)
#print("eft2_1:", eft2_1)
#需要按list顺序执行
for x in eft1:
if x[0] == node_i:
break
time1 = time1 + x[1]
for x1 in eft1_1:
if x1[0] == node_i:
break
time1_1 = time1_1 + x1[1]
for y in eft2:
if y[0] == node_i:
break
time2 = time2 + y[1]
for y1 in eft2_1:
if y1[0] == node_i:
break
time2_1 = time2_1 + y1[1]
#print("time1:", time1)
#print("time2:", time2)
#slowdown = t1_eft[-1] / t2_eft[-1]
time1_diff = time1_1 - time1
time2_diff = time2_1 - time2
if time2 != 0:
speedrate = time1 / time2
print("node:", node_i)
print("speedrate:", speedrate)
return speedrate
def Speedrate_1(node_i, Gm, gm_c, gm_w, G, g_c, g_w):
'''
一般算法使用
思想:对一个DAG生成的执行队列计算调度长度,该队列的每个节点都根据前驱计算调度长度,然后计算总和。
队列中有前驱相关性的,可以在计算后减去那部分调度长度。
'''
speedrate = 0
time1 = 0
time1_1 = 0
time2 = 0
time2_2 = 0
#t1_st, t1_eft = Makespan(Gm, node_i, gm_c, gm_w)
#t2_st, t2_eft = Makespan(G, node_i, g_c, g_w)
eft_time1, eft_time1_1 = Makerspan_1(Gm, gm_c, gm_w)
eft_time2, eft_time2_2 = Makerspan_1(G, g_c, g_w)
#print("slowndown(eft_time1:", eft_time1)
#print("slowndown(eft_time1_1:", eft_time1_1)
#print("slowndown(eft_time2:", eft_time2)
#print("slowndown(eft_time2_2:", eft_time2_2)
eft1 = eft_gent(eft_time1)
eft1_1 = eft_gent(eft_time1_1)
eft2 = eft_gent(eft_time2)
eft2_2 = eft_gent(eft_time2_2)
#print("eft1:", eft1)
#print("eft1:", eft1_1)
#print("eft2:", eft2)
#print("eft2:", eft2_2)
for x in eft1:
if x[0] == node_i:
break
time1 = time1 + x[1]
for x1 in eft1_1:
if x1[0] == node_i:
break
time1_1 = time1_1 + x1[1]
for y in eft2:
if y[0] == node_i:
break
time2 = time2 + y[1]
for y1 in eft2_2:
if y1[0] == node_i:
break
time2_2 = time2_2 + y1[1]
time1 = time1_1 - time1
time2 = time2_2 - time2
#print("time1:", time1)
#print("time2:", time2)
if time2 != 0:
speedrate = time1 / time2
print("node:", node_i)
print("speedrate:", speedrate)
return speedrate
def Makerspan(order, c, w):
#最晚执行时间的中间结果
eft_median = []
#最晚任务执行时间
eft_time = []
#最晚执行时间的中间结果
eft_median1 = []
#最晚任务执行时间
eft_time1 = []
for i in range(len(order)):
task_order = []
task_order1 = []
costsum = 0
#求出任务前驱
#print("preb入口结点:", order[i])
task_order, thrownlist = preb(order, c, i, task_order, order[i])
#求出理想的前驱集合,没有约束条件,集合长度>=task_ord
#这里好像有问题,第四个参数,改了
task_order1 = preb_1(order, c, i, task_order1, order[i])
task_ord = [x[0] for x in task_order ]