-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink_prediction_embeddings.py
226 lines (196 loc) · 8.22 KB
/
link_prediction_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import pickle
import json
from datetime import datetime as dt
from collections import defaultdict
import numpy as np
import pandas as pd
import click
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm
from scipy.sparse import vstack
class Paragraph:
def __init__(self, case_id, number, date, text, citations):
self.case_id = case_id
self.number = number
self.date = dt.strptime(date, "%Y-%m-%d")
self.text = text
self.citations = citations
def get_id(self):
return f"{self.case_id}-{self.number}"
def retrieve_candidate_paragraphs(paragraphs, date):
# Given a paragraph's date of publication,
# all the previous paragraphs can be considered as citation candidates
candidates = set()
for p in paragraphs:
if p.date < date:
candidates.add(p)
return candidates
def generate_train_test(metadata):
# Training set will be paragraph from < 2018, test set >= 2018
train = list()
test = list()
for case_id, m in metadata.items():
m['case_id'] = case_id
date = m['meta']['date']
year = date.split('-')[0]
if int(year) < 2018:
train.append(m)
else:
test.append(m)
return train, test
def retrieve_candidates_ids(metadatas, date):
# Given a paragraph's date of publication,
# all the previous paragraphs can be considered as citation candidates
candidates = set()
for case_id, metadata in metadatas.items():
p_date = dt.strptime(metadata['meta']['date'], "%Y-%m-%d")
if p_date < date:
candidates.add(case_id)
return candidates
def tf_idf(tf_idf, text1, text2):
vector1 = tf_idf.transform([text1])
vector2 = tf_idf.transform([text2])
similarity = cosine_similarity(vector1, vector2)
return similarity[0]
def concat_sparse_matrix(vectors_by_par, paragraphs):
vectors = [vectors_by_par[p].reshape(1, -1) for p in paragraphs]
matrix = vstack(vectors)
return matrix
def concat_par_vectors(vectors_by_par, paragraphs):
vectors = [vectors_by_par[p].reshape(1, -1) for p in paragraphs]
matrix = np.vstack(vectors)
return matrix
def compute_precision(concat_func, all_paragraphs_obj, vectors_by_par, paragraph, k=10, verbose=False):
candidates = retrieve_candidate_paragraphs(all_paragraphs_obj, paragraph.date)
candidates_texts = list({p.text for p in candidates if p.text in vectors_by_par})
citations_to_find = {c for c in paragraph.citations if c in candidates_texts}
num_citations = len(citations_to_find)
if num_citations:
candidates_vectors = concat_func(vectors_by_par, candidates_texts)
source_vector = vectors_by_par[paragraph.text]
sims = cosine_similarity(candidates_vectors, source_vector.reshape(1, -1)).reshape(-1)
indices = np.argsort(sims)[::-1]
results = defaultdict(lambda: defaultdict(dict))
num_good = 0
precisions = list()
ranks = list()
for i, candidate_index in enumerate(indices):
candidate_sim = sims[candidate_index]
candidate_text = candidates_texts[candidate_index]
if verbose and i < 11:
ranks.append((candidate_text, float(candidate_sim)))
if candidate_text in citations_to_find:
num_good += 1
precision = num_good / (i+1)
precisions.append(precision)
citations_to_find.remove(candidate_text)
results[paragraph.text][candidate_text]['rank'] = i
results[paragraph.text][candidate_text]['precision'] = precision
results[paragraph.text][candidate_text]['similarity'] = float(candidate_sim)
results['average_precision'] = sum(precisions) / num_citations
if verbose:
results['ranks'] = ranks
return dict(results)
else:
print("Hey!")
return None
def find_paragraph_by_text(paragraphs, text):
for p in paragraphs:
if p.text == text:
return p
def load_vectors(vectors_file):
vectors = pickle.load(open(vectors_file, "rb"))
filtered = dict()
for k, v in vectors.items():
if np.isnan(v).sum() > 0:
pass
else:
filtered[k] = v
return filtered
@click.command()
@click.argument("paragraph_file")
@click.argument("metadata_file")
@click.argument("vectors_file")
def main(paragraph_file, metadata_file, vectors_file):
print("Loading data...")
paragraphs_df = pd.read_excel(paragraph_file)
print("Rows", len(paragraphs_df))
paragraphs_df = paragraphs_df.dropna()
print("Rows", len(paragraphs_df))
metadata = json.load(open(metadata_file))
train, test = generate_train_test(metadata)
train_celex = {m['case_id'] for m in train}
test_celex = {m['case_id'] for m in test}
train_paragraphs_from = list(set(paragraphs_df[paragraphs_df['CELEX_FROM'].isin(train_celex)]["TEXT_FROM"].tolist()))
train_paragraphs_to = list(set(paragraphs_df[paragraphs_df['CELEX_TO'].isin(train_celex)]["TEXT_TO"].tolist()))
train_paragraphs = [p for p in train_paragraphs_from + train_paragraphs_to if type(p) is str]
print("Building objects...")
train_paragraphs_obj = list()
test_paragraphs_obj = list()
texts = set()
grp_by_celex_df = paragraphs_df.groupby(["CELEX_FROM", "NUMBER_FROM"])
for (celex_from, number_from), subset_df in tqdm(grp_by_celex_df):
paragraph = subset_df['TEXT_FROM'].tolist()[0]
date = subset_df['DATE_FROM'].tolist()[0]
citations = subset_df['TEXT_TO'].tolist()
obj = Paragraph(celex_from, number_from, date, paragraph, citations)
if celex_from in train_celex:
train_paragraphs_obj.append(obj)
texts.add(paragraph)
elif celex_from in test_celex:
test_paragraphs_obj.append(obj)
texts.add(paragraph)
else:
print("oups")
paragraphs_to_obj = list()
for _, row in tqdm(paragraphs_df.iterrows()):
paragraph = row['TEXT_TO']
if paragraph not in texts:
celex_to = row['CELEX_TO']
number_to = row['NUMBER_TO']
date = row['DATE_TO']
citations = None
obj = Paragraph(celex_to, number_to, date, paragraph, citations)
paragraphs_to_obj.append(obj)
texts.add(paragraph)
print(len(train_paragraphs_obj), len(test_paragraphs_obj), len(paragraphs_to_obj))
p_from = set(paragraphs_df['TEXT_FROM'].tolist())
p_to = set(paragraphs_df['TEXT_TO'].tolist())
all_paragraphs = list(p_from.union(p_to))
all_paragraphs = [p for p in all_paragraphs if type(p) is str]
print(len(p_from), len(p_to), len(all_paragraphs))
if vectors_file == 'tfidf': # train and compute vectors on the fly
print("Fitting tf-idf...")
vectorizer = TfidfVectorizer(
stop_words='english',
strip_accents='ascii'
)
X = vectorizer.fit_transform(train_paragraphs)
vectors = vectorizer.transform(all_paragraphs)
vectors_by_par = dict()
for p, v in zip(all_paragraphs, vectors):
vectors_by_par[p] = v
concat_func = concat_sparse_matrix
else:
vectors_by_par = load_vectors(vectors_file)
concat_func = concat_par_vectors
test_pars_with_citations = [p for p in test_paragraphs_obj if len(p.citations)]
all_paragraphs_obj = train_paragraphs_obj + test_paragraphs_obj + paragraphs_to_obj
print("Computing precisions single thread...")
results = list()
logs = list()
pbar = tqdm(test_pars_with_citations)
for i, p in enumerate(pbar):
r = compute_precision(concat_func, all_paragraphs_obj, vectors_by_par, p, verbose=True)
if r is not None:
results.append(r['average_precision'])
logs.append(r)
if i > 0 and i % 10 == 0:
pbar.set_description(f"MAP: {np.mean(results)}")
mean_average_precision = np.mean(results)
print(mean_average_precision)
json.dump(results, open(f"./data/processed/link_prediction.json", "w"), indent=True)
json.dump(logs, open(f"./data/processed/link_logs.json", "w"), indent=True)
if __name__ == '__main__':
main()