-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequencial_flow.py
90 lines (75 loc) · 2.75 KB
/
sequencial_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import sys
import time
import timeit
import numpy as np
import pandas as pd
import seaborn as sn
from sklearn import datasets, metrics, svm
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model.ridge import RidgeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold, train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
import dataset_loader as loader
from MultiClassifier import MultiClassifier
num_cores = 1
num_repetitions = 10
def print_results(description, accuracy, time, num_cores):
print(description)
print("Accuracy: " + str(accuracy), ", Time: " +
str(time) + " seconds" + ", cores: " + str(num_cores))
def get_multi_classifier():
clf1 = RidgeClassifier()
clf2 = RandomForestClassifier(n_estimators=10)
clf3 = LinearDiscriminantAnalysis()
clf4 = GaussianNB()
classifier = MultiClassifier([
clf1,
clf2,
clf3,
clf4
])
return classifier
def train_test_run(X, y, num_cores, description):
print("Train-test run of " + description)
# Split data into train and test subsets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, shuffle=False)
start = time.time()
classifier = get_multi_classifier()
classifier.fit(X_train, y_train)
predicted = classifier.predict(X_test)
acc = accuracy_score(predicted, y_test)
end = time.time()
print_results(description, acc, end - start, num_cores)
def cross_validation_run(X, y, num_cores, description):
print("CV run of " + description)
start = time.time()
kf = KFold(n_splits=10, shuffle=True)
kf.get_n_splits(X)
accuracies = list()
for train_index, test_index in kf.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
classifier = get_multi_classifier()
classifier.fit(X_train, y_train)
predicted = classifier.predict(X_test)
acc = accuracy_score(predicted, y_test)
accuracies.append(acc)
acc = np.mean(accuracies)
end = time.time()
print_results(description, acc, end - start, num_cores)
if sys.argv[1] == 'MNIST':
X, y = loader.load_mnist_data()
elif sys.argv[1] == 'CIFAR-10':
X, y = loader.load_cifar10_data()
elif sys.argv[1] == 'CIFAR-100':
X, y = loader.load_cifar100_data()
elif sys.argv[1] == 'letter-recognition':
X, y = loader.load_letter_data()
if sys.argv[2] == 'CV':
cross_validation_run(X, y, num_cores, f'{sys.argv[1]} {sys.argv[2]}')
elif sys.argv[2] == 'test-train':
train_test_run(X, y, num_cores, f'{sys.argv[1]} {sys.argv[2]}')