forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path110. Balanced Binary Tree.cpp
77 lines (52 loc) · 1.55 KB
/
110. Balanced Binary Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the left and right subtrees of every node differ in height by no more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int isBalancedUtil(TreeNode* root, bool &isBal){
// base case: tree is empty or tree is not balanced
if(!root || !isBal)
return 0;
int lh=isBalancedUtil(root->left, isBal);
int rh=isBalancedUtil(root->right, isBal);
// if absolute difference between height of
// its left subtree and right subtree is more than 1 tree becomes unbalanced
if(abs(lh-rh)>1) isBal=false;
// return height of subtree rooted at current node
return max(lh, rh)+1;
}
bool isBalanced(TreeNode* root) {
bool isBal=true; // flag to check if tree is balanced or not
isBalancedUtil(root, isBal);
return isBal;
}
};