forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbipartite_graph.cpp
147 lines (90 loc) · 3.12 KB
/
bipartite_graph.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Given an undirected graph, return true if and only if it is bipartite.
Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B
such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists.
Each node is an integer between 0 and graph.length - 1.
There are no self edges or parallel edges: graph[i] does not contain i, and it doesn't contain any element twice.
Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
Note:
graph will have length in range [1, 100].
graph[i] will contain integers in range [0, graph.length - 1].
graph[i] will not contain i or duplicate values.
The graph is undirected: if any element j is in graph[i], then i will be in graph[j].
// Finding bipartite using graph coloring concept
// BFS
class Solution {
public:
bool bipartiteBFS(int s, vector<vector<int>> &graph, vector <int> &color) {
queue <int> q;
q.push(s);
color[s] = 1; // initial coloring
while (!q.empty()) {
int node = q.front();
q.pop();
for (auto &x: graph[node]) {
if (color[x] == -1) {
q.push(x);
color[x] = !(color[node]); // giving opposite color
} else {
if (color[x] == color[node]) return false; // not bipartite
}
}
}
return true; // bipartite
}
bool isBipartite(vector<vector<int>>& graph) {
int n = graph.size();
vector <int> color(n, -1);
for (int i = 0; i < n; i++) {
if (color[i] == -1) {
if (!bipartiteBFS(i, graph, color)) return false;
}
}
return true;
}
};
// DFS
class Solution {
public:
bool bipartiteDFS(int s, vector<vector<int>> &graph, vector <int> &color) {
if (color[s] == -1) color[s] = 1; // initial coloring
for (auto &x: graph[s]) {
if (color[x] == -1) {
color[x] = !(color[s]); // coloring opposite
if (!bipartiteDFS(x, graph, color)) return false;
} else {
if (color[x] == color[s]) return false; // not bipartite
}
}
return true; // bipartite
}
bool isBipartite(vector<vector<int>>& graph) {
int n = graph.size();
vector <int> color(n, -1);
for (int i = 0; i < n; i++) {
if (color[i] == -1) {
if (!bipartiteDFS(i, graph, color)) return false;
}
}
return true;
}
};