|
| 1 | +""" |
| 2 | +The Dueling DQN based on this paper: https://arxiv.org/abs/1511.06581 |
| 3 | +
|
| 4 | +View more on 莫烦Python: https://morvanzhou.github.io/tutorials/ |
| 5 | +
|
| 6 | +Using: |
| 7 | +Tensorflow: 1.0 |
| 8 | +""" |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +import pandas as pd |
| 12 | +import tensorflow as tf |
| 13 | +import matplotlib.pyplot as plt |
| 14 | + |
| 15 | +np.random.seed(1) |
| 16 | +tf.set_random_seed(1) |
| 17 | + |
| 18 | + |
| 19 | +class DuelingDQN: |
| 20 | + def __init__( |
| 21 | + self, |
| 22 | + n_actions, |
| 23 | + n_features, |
| 24 | + learning_rate=0.01, |
| 25 | + reward_decay=0.9, |
| 26 | + e_greedy=0.9, |
| 27 | + replace_target_iter=300, |
| 28 | + memory_size=500, |
| 29 | + batch_size=32, |
| 30 | + e_greedy_increment=None, |
| 31 | + output_graph=False, |
| 32 | + dueling=True, |
| 33 | + sess=None, |
| 34 | + ): |
| 35 | + self.n_actions = n_actions |
| 36 | + self.n_features = n_features |
| 37 | + self.lr = learning_rate |
| 38 | + self.gamma = reward_decay |
| 39 | + self.epsilon_max = e_greedy |
| 40 | + self.replace_target_iter = replace_target_iter |
| 41 | + self.memory_size = memory_size |
| 42 | + self.batch_size = batch_size |
| 43 | + self.epsilon_increment = e_greedy_increment |
| 44 | + self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max |
| 45 | + |
| 46 | + self.dueling = dueling # decide to use dueling DQN or not |
| 47 | + |
| 48 | + self.learn_step_counter = 0 |
| 49 | + self.memory = pd.DataFrame(np.zeros((self.memory_size, n_features*2+2))) |
| 50 | + self._build_net() |
| 51 | + if sess is None: |
| 52 | + self.sess = tf.Session() |
| 53 | + else: |
| 54 | + self.sess = sess |
| 55 | + if output_graph: |
| 56 | + tf.summary.FileWriter("logs/", self.sess.graph) |
| 57 | + # self.sess.run(tf.global_variables_initializer()) |
| 58 | + self.cost_his = [] |
| 59 | + |
| 60 | + def _build_net(self): |
| 61 | + def build_layers(s, c_names, n_l1, w_initializer, b_initializer): |
| 62 | + with tf.variable_scope('l1'): |
| 63 | + w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names) |
| 64 | + b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names) |
| 65 | + l1 = tf.nn.relu(tf.matmul(s, w1) + b1) |
| 66 | + |
| 67 | + if self.dueling: |
| 68 | + # Dueling DQN |
| 69 | + with tf.variable_scope('Value'): |
| 70 | + w2 = tf.get_variable('w2', [n_l1, 1], initializer=w_initializer, collections=c_names) |
| 71 | + b2 = tf.get_variable('b2', [1, 1], initializer=b_initializer, collections=c_names) |
| 72 | + self.V = tf.matmul(l1, w2) + b2 |
| 73 | + |
| 74 | + with tf.variable_scope('Advantage'): |
| 75 | + w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names) |
| 76 | + b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names) |
| 77 | + self.A = tf.matmul(l1, w2) + b2 |
| 78 | + |
| 79 | + with tf.variable_scope('Q'): |
| 80 | + out = self.V + (self.A - tf.reduce_mean(self.A, axis=1, keep_dims=True)) # Q = V(s) + A(s,a) |
| 81 | + else: |
| 82 | + with tf.variable_scope('Q'): |
| 83 | + w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names) |
| 84 | + b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names) |
| 85 | + out = tf.matmul(l1, w2) + b2 |
| 86 | + |
| 87 | + return out |
| 88 | + |
| 89 | + # ------------------ build evaluate_net ------------------ |
| 90 | + self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input |
| 91 | + self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss |
| 92 | + with tf.variable_scope('eval_net'): |
| 93 | + c_names, n_l1, w_initializer, b_initializer = \ |
| 94 | + ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 20, \ |
| 95 | + tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers |
| 96 | + |
| 97 | + self.q_eval = build_layers(self.s, c_names, n_l1, w_initializer, b_initializer) |
| 98 | + |
| 99 | + with tf.variable_scope('loss'): |
| 100 | + self.loss = tf.reduce_sum(tf.squared_difference(self.q_target, self.q_eval)) |
| 101 | + with tf.variable_scope('train'): |
| 102 | + self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss) |
| 103 | + |
| 104 | + # ------------------ build target_net ------------------ |
| 105 | + self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input |
| 106 | + with tf.variable_scope('target_net'): |
| 107 | + c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES] |
| 108 | + |
| 109 | + self.q_next = build_layers(self.s_, c_names, n_l1, w_initializer, b_initializer) |
| 110 | + |
| 111 | + def store_transition(self, s, a, r, s_): |
| 112 | + if not hasattr(self, 'memory_counter'): |
| 113 | + self.memory_counter = 0 |
| 114 | + transition = np.hstack((s, [a, r], s_)) |
| 115 | + index = self.memory_counter % self.memory_size |
| 116 | + self.memory.iloc[index, :] = transition |
| 117 | + self.memory_counter += 1 |
| 118 | + |
| 119 | + def choose_action(self, observation): |
| 120 | + observation = observation[np.newaxis, :] |
| 121 | + if np.random.uniform() < self.epsilon: # choosing action |
| 122 | + actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation}) |
| 123 | + action = np.argmax(actions_value) |
| 124 | + else: |
| 125 | + action = np.random.randint(0, self.n_actions) |
| 126 | + return action |
| 127 | + |
| 128 | + def _replace_target_params(self): |
| 129 | + t_params = tf.get_collection('target_net_params') |
| 130 | + e_params = tf.get_collection('eval_net_params') |
| 131 | + self.sess.run([tf.assign(t, e) for t, e in zip(t_params, e_params)]) |
| 132 | + |
| 133 | + def learn(self): |
| 134 | + if self.learn_step_counter % self.replace_target_iter == 0: |
| 135 | + self._replace_target_params() |
| 136 | + print('\ntarget_params_replaced\n') |
| 137 | + |
| 138 | + batch_memory = self.memory.sample(self.batch_size) \ |
| 139 | + if self.memory_counter > self.memory_size \ |
| 140 | + else self.memory.iloc[:self.memory_counter].sample(self.batch_size, replace=True) |
| 141 | + |
| 142 | + q_next, q_eval4next, = self.sess.run( |
| 143 | + [self.q_next, self.q_eval], |
| 144 | + feed_dict={self.s_: batch_memory.iloc[:, -self.n_features:], # next observation |
| 145 | + self.s: batch_memory.iloc[:, -self.n_features:]}) # next observation |
| 146 | + q_eval = self.sess.run(self.q_eval, {self.s: batch_memory.iloc[:, :self.n_features]}) |
| 147 | + |
| 148 | + q_target = q_eval.copy() |
| 149 | + |
| 150 | + batch_index = np.arange(self.batch_size, dtype=np.int32) |
| 151 | + eval_act_index = batch_memory.iloc[:, self.n_features].astype(int) |
| 152 | + reward = batch_memory.iloc[:, self.n_features + 1] |
| 153 | + |
| 154 | + q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1) |
| 155 | + |
| 156 | + _, self.cost = self.sess.run([self._train_op, self.loss], |
| 157 | + feed_dict={self.s: batch_memory.iloc[:, :self.n_features], |
| 158 | + self.q_target: q_target}) |
| 159 | + self.cost_his.append(self.cost) |
| 160 | + |
| 161 | + self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max |
| 162 | + self.learn_step_counter += 1 |
| 163 | + |
| 164 | + |
| 165 | + |
| 166 | + |
| 167 | + |
0 commit comments