|
| 1 | +import os |
| 2 | + |
| 3 | +import torch |
| 4 | +import triton |
| 5 | +import triton.language as tl |
| 6 | + |
| 7 | + |
| 8 | +@torch.compile(dynamic=True) |
| 9 | +def get_last_loc_torch( |
| 10 | + req_to_token: torch.Tensor, |
| 11 | + req_pool_indices_tensor: torch.Tensor, |
| 12 | + prefix_lens_tensor: torch.Tensor, |
| 13 | +) -> torch.Tensor: |
| 14 | + return torch.where( |
| 15 | + prefix_lens_tensor > 0, |
| 16 | + req_to_token[req_pool_indices_tensor, prefix_lens_tensor - 1], |
| 17 | + torch.full_like(prefix_lens_tensor, -1), |
| 18 | + ) |
| 19 | + |
| 20 | + |
| 21 | +@triton.jit |
| 22 | +def get_last_loc_kernel( |
| 23 | + req_to_token, |
| 24 | + req_pool_indices_tensor, |
| 25 | + prefix_lens_tensor, |
| 26 | + result, |
| 27 | + num_tokens, |
| 28 | + req_to_token_stride, |
| 29 | + BLOCK_SIZE: tl.constexpr, |
| 30 | +): |
| 31 | + pid = tl.program_id(0) |
| 32 | + offset = tl.arange(0, BLOCK_SIZE) + pid * BLOCK_SIZE |
| 33 | + mask = offset < num_tokens |
| 34 | + |
| 35 | + prefix_lens = tl.load(prefix_lens_tensor + offset, mask=mask, other=0) |
| 36 | + req_pool_indices = tl.load(req_pool_indices_tensor + offset, mask=mask, other=0) |
| 37 | + |
| 38 | + token_mask = prefix_lens > 0 |
| 39 | + token_index = req_pool_indices * req_to_token_stride + (prefix_lens - 1) |
| 40 | + tokens = tl.load(req_to_token + token_index, mask=token_mask, other=-1) |
| 41 | + |
| 42 | + tl.store(result + offset, tokens, mask=mask) |
| 43 | + |
| 44 | + |
| 45 | +def get_last_loc_triton( |
| 46 | + req_to_token: torch.Tensor, |
| 47 | + req_pool_indices_tensor: torch.Tensor, |
| 48 | + prefix_lens_tensor: torch.Tensor, |
| 49 | +) -> torch.Tensor: |
| 50 | + BLOCK_SIZE = 256 |
| 51 | + num_tokens = prefix_lens_tensor.shape[0] |
| 52 | + result = torch.empty_like(prefix_lens_tensor) |
| 53 | + grid = (triton.cdiv(num_tokens, BLOCK_SIZE),) |
| 54 | + |
| 55 | + get_last_loc_kernel[grid]( |
| 56 | + req_to_token, |
| 57 | + req_pool_indices_tensor, |
| 58 | + prefix_lens_tensor, |
| 59 | + result, |
| 60 | + num_tokens, |
| 61 | + req_to_token.stride(0), |
| 62 | + BLOCK_SIZE, |
| 63 | + ) |
| 64 | + return result |
| 65 | + |
| 66 | + |
| 67 | +def test_get_last_loc(): |
| 68 | + max_batch = 4097 |
| 69 | + max_context_len = 6148 |
| 70 | + batch_size = 20 |
| 71 | + |
| 72 | + # Initialize input tensors |
| 73 | + req_to_token = torch.zeros( |
| 74 | + (max_batch, max_context_len), dtype=torch.int32, device="cuda" |
| 75 | + ) |
| 76 | + req_pool_indices = torch.arange(batch_size, dtype=torch.int64, device="cuda") |
| 77 | + pre_lens = torch.randint( |
| 78 | + -max_context_len // 2, |
| 79 | + max_context_len, |
| 80 | + (batch_size,), |
| 81 | + dtype=torch.int64, |
| 82 | + device="cuda", |
| 83 | + ) |
| 84 | + |
| 85 | + last_loc_res = get_last_loc_triton(req_to_token, req_pool_indices, pre_lens) |
| 86 | + last_loc_ref = get_last_loc_torch(req_to_token, req_pool_indices, pre_lens) |
| 87 | + |
| 88 | + # Compare results |
| 89 | + torch.testing.assert_close(last_loc_res, last_loc_ref) |
| 90 | + |
| 91 | + |
| 92 | +def get_benchmark(): |
| 93 | + batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] |
| 94 | + |
| 95 | + @triton.testing.perf_report( |
| 96 | + triton.testing.Benchmark( |
| 97 | + x_names=["batch_size"], |
| 98 | + x_vals=batch_sizes, |
| 99 | + line_arg="provider", |
| 100 | + line_vals=["reference", "triton"], |
| 101 | + line_names=["PyTorch", "Triton"], |
| 102 | + styles=[("blue", "-"), ("green", "-")], |
| 103 | + ylabel="us", |
| 104 | + plot_name="get-last-loc-performance", |
| 105 | + args={}, |
| 106 | + ) |
| 107 | + ) |
| 108 | + def benchmark(batch_size, provider): |
| 109 | + max_batch = 2048 |
| 110 | + max_context_len = 16384 |
| 111 | + |
| 112 | + req_to_token = torch.zeros( |
| 113 | + (max_batch, max_context_len), dtype=torch.int32, device="cuda" |
| 114 | + ) |
| 115 | + req_pool_indices = torch.arange(batch_size, dtype=torch.int64, device="cuda") |
| 116 | + pre_lens = torch.randint( |
| 117 | + -max_context_len // 2, |
| 118 | + max_context_len, |
| 119 | + (batch_size,), |
| 120 | + dtype=torch.int64, |
| 121 | + device="cuda", |
| 122 | + ) |
| 123 | + |
| 124 | + quantiles = [0.5, 0.2, 0.8] |
| 125 | + |
| 126 | + if provider == "reference": |
| 127 | + ms, min_ms, max_ms = triton.testing.do_bench( |
| 128 | + lambda: get_last_loc_torch(req_to_token, req_pool_indices, pre_lens), |
| 129 | + quantiles=quantiles, |
| 130 | + ) |
| 131 | + elif provider == "triton": |
| 132 | + ms, min_ms, max_ms = triton.testing.do_bench( |
| 133 | + lambda: get_last_loc_triton(req_to_token, req_pool_indices, pre_lens), |
| 134 | + quantiles=quantiles, |
| 135 | + ) |
| 136 | + |
| 137 | + return 1000 * ms, 1000 * max_ms, 1000 * min_ms |
| 138 | + |
| 139 | + return benchmark |
| 140 | + |
| 141 | + |
| 142 | +def run_benchmark(save_path: str = "./configs/benchmark_ops/get_last_loc/"): |
| 143 | + """Run benchmark and save results""" |
| 144 | + |
| 145 | + # Ensure save path exists |
| 146 | + os.makedirs(save_path, exist_ok=True) |
| 147 | + |
| 148 | + # Run correctness test |
| 149 | + test_get_last_loc() |
| 150 | + print("Correctness test passed!") |
| 151 | + |
| 152 | + # Run performance test |
| 153 | + benchmark = get_benchmark() |
| 154 | + benchmark.run(print_data=True, save_path=save_path) |
| 155 | + |
| 156 | + |
| 157 | +if __name__ == "__main__": |
| 158 | + import argparse |
| 159 | + |
| 160 | + parser = argparse.ArgumentParser() |
| 161 | + parser.add_argument( |
| 162 | + "--save_path", |
| 163 | + type=str, |
| 164 | + default="./configs/benchmark_ops/get_last_loc/", |
| 165 | + help="Path to save benchmark results", |
| 166 | + ) |
| 167 | + args = parser.parse_args() |
| 168 | + |
| 169 | + run_benchmark(args.save_path) |
0 commit comments