-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbaidu.py
392 lines (356 loc) · 14.2 KB
/
baidu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import json
import numpy as np
from bert4keras.backend import keras, K, batch_gather,search_layer
from bert4keras.layers import Loss
from bert4keras.layers import LayerNormalization
from bert4keras.tokenizers import Tokenizer
from bert4keras.models import build_transformer_model
from bert4keras.optimizers import Adam, extend_with_exponential_moving_average
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.snippets import open, to_array
from keras.layers import Input, Dense, Lambda, Reshape
from keras.models import Model
from tqdm import tqdm
import os
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
train=False #如果是训练就选择True,如果是预测就选择False
maxlen = 220
batch_size =24
epoch=5
config_path = '../roberta_wwm/bert_config.json'
checkpoint_path = '../roberta_wwm/bert_model.ckpt'
dict_path = '../roberta_wwm/vocab.txt'
model_save = 'best_model_v3.weights'
def load_data(filename):
"""加载数据
单条格式:{'text': text, 'spo_list': [(s, p, o)]}
"""
D = []
with open(filename, encoding='utf-8') as f:
for l in f:
l = json.loads(l)
D.append({
'text': l['text'],
'spo_list': [(spo['subject'], spo['predicate'], spo['object']['@value'])
for spo in l['spo_list']]
})
return D
def load_test_data(filename):
"""加载数据
单条格式:{'text': text, 'spo_list': [(s, p, o)]}
"""
D = []
with open(filename, encoding='utf-8') as f:
for l in f:
l = json.loads(l)
D.append({
'text': l['text']
})
return D
train_data = load_data('../baidu_data/duie_train.json')
valid_data = load_data('../baidu_data/duie_dev.json')
predicate2id, id2predicate = {}, {}
with open('../baidu_data/duie_schema.json') as f:
for l in f:
l = json.loads(l)
if l['predicate'] not in predicate2id:
id2predicate[len(predicate2id)] = l['predicate']
predicate2id[l['predicate']] = len(predicate2id)
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
def search(pattern, sequence):
"""从sequence中寻找子串pattern
如果找到,返回第一个下标;否则返回-1。
"""
n = len(pattern)
for i in range(len(sequence)):
if sequence[i:i + n] == pattern:
return i
return -1
class data_generator(DataGenerator):
"""数据生成器
"""
def __iter__(self, random=False):
batch_token_ids, batch_segment_ids = [], []
batch_subject_labels, batch_subject_ids, batch_object_labels = [], [], []
for is_end, d in self.sample(random):
token_ids, segment_ids = tokenizer.encode(d['text'], maxlen=maxlen)
# 整理三元组 {s: [(o, p)]}
spoes = {}
for s, p, o in d['spo_list']:
s = tokenizer.encode(s)[0][1:-1]
p = predicate2id[p]
o = tokenizer.encode(o)[0][1:-1]
s_idx = search(s, token_ids)
o_idx = search(o, token_ids)
if s_idx != -1 and o_idx != -1:
s = (s_idx, s_idx + len(s) - 1)
o = (o_idx, o_idx + len(o) - 1, p)
if s not in spoes:
spoes[s] = []
spoes[s].append(o)
if spoes:
# subject标签
subject_labels = np.zeros((len(token_ids), 2))
for s in spoes:
subject_labels[s[0], 0] = 1
subject_labels[s[1], 1] = 1
# 随机选一个subject(这里没有实现错误!这就是想要的效果!!)
start, end = np.array(list(spoes.keys())).T
start = np.random.choice(start)
end = np.random.choice(end[end >= start])
subject_ids = (start, end)
# 对应的object标签
object_labels = np.zeros((len(token_ids), len(predicate2id), 2))
for o in spoes.get(subject_ids, []):
object_labels[o[0], o[2], 0] = 1
object_labels[o[1], o[2], 1] = 1
# 构建batch
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_subject_labels.append(subject_labels)
batch_subject_ids.append(subject_ids)
batch_object_labels.append(object_labels)
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = sequence_padding(batch_token_ids)
batch_segment_ids = sequence_padding(batch_segment_ids)
batch_subject_labels = sequence_padding(
batch_subject_labels
)
batch_subject_ids = np.array(batch_subject_ids)
batch_object_labels = sequence_padding(batch_object_labels)
yield [
batch_token_ids, batch_segment_ids,
batch_subject_labels, batch_subject_ids,
batch_object_labels
], None
batch_token_ids, batch_segment_ids = [], []
batch_subject_labels, batch_subject_ids, batch_object_labels = [], [], []
def extract_subject(inputs):
"""根据subject_ids从output中取出subject的向量表征
"""
output, subject_ids = inputs
start = batch_gather(output, subject_ids[:, :1])
end = batch_gather(output, subject_ids[:, 1:])
subject = K.concatenate([start, end], 2)
return subject[:, 0]
# 补充输入
subject_labels = Input(shape=(None, 2), name='Subject-Labels')
subject_ids = Input(shape=(2,), name='Subject-Ids')
object_labels = Input(shape=(None, len(predicate2id), 2), name='Object-Labels')
# 加载预训练模型
bert = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
return_keras_model=False,
model='roberta'
)
# 预测subject
output = Dense(
units=2, activation='sigmoid', kernel_initializer=bert.initializer
)(bert.model.output)
subject_preds = Lambda(lambda x: x**2)(output)
subject_model = Model(bert.model.inputs, subject_preds)
# 传入subject,预测object
# 通过Conditional Layer Normalization将subject融入到object的预测中
output = bert.model.layers[-2].get_output_at(-1) # 自己想为什么是-2而不是-1
subject = Lambda(extract_subject)([output, subject_ids])
output = LayerNormalization(conditional=True)([output, subject])
output = Dense(
units=len(predicate2id) * 2,
activation='sigmoid',
kernel_initializer=bert.initializer
)(output)
output = Lambda(lambda x: x**4)(output)
object_preds = Reshape((-1, len(predicate2id), 2))(output)
object_model = Model(bert.model.inputs + [subject_ids], object_preds)
class TotalLoss(Loss):
"""subject_loss与object_loss之和,都是二分类交叉熵
"""
def compute_loss(self, inputs, mask=None):
subject_labels, object_labels = inputs[:2]
subject_preds, object_preds, _ = inputs[2:]
if mask[4] is None:
mask = 1.0
else:
mask = K.cast(mask[4], K.floatx())
# sujuect部分loss
subject_loss = K.binary_crossentropy(subject_labels, subject_preds)
subject_loss = K.mean(subject_loss, 2)
subject_loss = K.sum(subject_loss * mask) / K.sum(mask)
# object部分loss
object_loss = K.binary_crossentropy(object_labels, object_preds)
object_loss = K.sum(K.mean(object_loss, 3), 2)
object_loss = K.sum(object_loss * mask) / K.sum(mask)
# 总的loss
return subject_loss + object_loss
subject_preds, object_preds = TotalLoss([2, 3])([
subject_labels, object_labels, subject_preds, object_preds,
bert.model.output
])
# 训练模型
train_model = Model(
bert.model.inputs + [subject_labels, subject_ids, object_labels],
[subject_preds, object_preds]
)
#AdamEMA = extend_with_exponential_moving_average(Adam, name='AdamEMA')
optimizer = Adam(learning_rate=1e-5)
train_model.compile(optimizer=optimizer)
def extract_spoes(text):
"""抽取输入text所包含的三元组
"""
tokens = tokenizer.tokenize(text, maxlen=maxlen)
mapping = tokenizer.rematch(text, tokens)
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
token_ids, segment_ids = to_array([token_ids], [segment_ids])
# 抽取subject
subject_preds = subject_model.predict([token_ids, segment_ids])
start = np.where(subject_preds[0, :, 0] > 0.5)[0]
end = np.where(subject_preds[0, :, 1] > 0.4)[0]
subjects = []
for i in start:
j = end[end >= i]
if len(j) > 0:
j = j[0]
subjects.append((i, j))
if subjects:
spoes = []
token_ids = np.repeat(token_ids, len(subjects), 0)
segment_ids = np.repeat(segment_ids, len(subjects), 0)
subjects = np.array(subjects)
# 传入subject,抽取object和predicate
object_preds = object_model.predict([token_ids, segment_ids, subjects])
for subject, object_pred in zip(subjects, object_preds):
start = np.where(object_pred[:, :, 0] > 0.5)
end = np.where(object_pred[:, :, 1] > 0.4)
for _start, predicate1 in zip(*start):
for _end, predicate2 in zip(*end):
if _start <= _end and predicate1 == predicate2:
spoes.append(
((mapping[subject[0]][0],
mapping[subject[1]][-1]), predicate1,
(mapping[_start][0], mapping[_end][-1]))
)
break
return [(text[s[0]:s[1] + 1], id2predicate[p], text[o[0]:o[1] + 1])
for s, p, o, in spoes]
else:
return []
class SPO(tuple):
"""用来存三元组的类
表现跟tuple基本一致,只是重写了 __hash__ 和 __eq__ 方法,
使得在判断两个三元组是否等价时容错性更好。
"""
def __init__(self, spo):
self.spox = (
tuple(tokenizer.tokenize(spo[0])),
spo[1],
tuple(tokenizer.tokenize(spo[2])),
)
def __hash__(self):
return self.spox.__hash__()
def __eq__(self, spo):
return self.spox == spo.spox
def evaluate(data):
"""评估函数,计算f1、precision、recall
"""
X, Y, Z = 1e-10, 1e-10, 1e-10
f = open('dev_pred.json', 'w', encoding='utf-8')
pbar = tqdm()
for d in data:
R = set([SPO(spo) for spo in extract_spoes(d['text'])])
T = set([SPO(spo) for spo in d['spo_list']])
X += len(R & T)
Y += len(R)
Z += len(T)
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
pbar.update()
pbar.set_description(
'f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall)
)
s = json.dumps({
'text': d['text'],
'spo_list': list(T),
'spo_list_pred': list(R),
'new': list(R - T),
'lack': list(T - R),
},
ensure_ascii=False,
indent=4)
f.write(s + '\n')
pbar.close()
f.close()
return f1, precision, recall
class Evaluator(keras.callbacks.Callback):
"""评估与保存
"""
def __init__(self):
self.best_val_f1 = 0.
def on_epoch_end(self, epoch, logs=None):
#optimizer.apply_ema_weights()
f1, precision, recall = evaluate(valid_data)
if f1 >= self.best_val_f1:
self.best_val_f1 = f1
train_model.save_weights(model_save)
#optimizer.reset_old_weights()
print(
'f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n' %
(f1, precision, recall, self.best_val_f1)
)
def pred(data):
f = open('duie.json', 'w', encoding='utf-8')
with open("../baidu_data/object_type.json", 'r', encoding='UTF-8') as x:
dict1 = json.load(x)
with open("../baidu_data/subject_type.json", 'r', encoding='UTF-8') as y:
dict2 = json.load(y)
with open("../baidu_data/inWork.json", 'r', encoding='UTF-8') as t:
dict3 = json.load(t)
for i in data:
try:
R = list(set([SPO(spo) for spo in extract_spoes(i['text'])]))
except:R=[]
x = []
for j in R:
type1=dict1.get(j[1],'-1')
type2=dict2.get(j[1],'-1')
inwork1=dict3.get(j[2],'-1')
#inwork2=dict3.get(dict1.get(j[2],'-1'),'-1')
if inwork1!='-1' :
x.append({'subject':j[0],'predicate':j[1],'object':{'@value':j[2],'inWork':inwork1},'object_type':type1,'subject_type':type2})
else :
x.append({'subject':j[0],'predicate':j[1],'object':{'@value':j[2]},'object_type':type1,'subject_type':type2})
# elif inwork1=='-1' and inwork2!='-1':
# x.append({'subject':j[0],'predicate':j[1],'object':{'@value':j[2]},'object_type':{'@value':type1,'inWork':inwork2},'subject_type':type2})
# elif inwork1=='-1' and inwork2=='-1':
# x.append({'subject':j[0],'predicate':j[1],'object':{'@value':j[2]},'object_type':{'@value':type1},'subject_type':type2})
s = json.dumps({
'text': i['text'],
'spo_list': x,
},
ensure_ascii=False)
f.write(s +'\n')
f.close()
if __name__ == '__main__':
if train == True:
train_generator = data_generator(train_data, batch_size)
dev_generator = data_generator(valid_data, batch_size)
evaluator = Evaluator()
#train_model.load_weights('best_model_v2.weights')
train_model.fit(
train_generator.forfit(),
steps_per_epoch=len(train_generator),
epochs=epoch,
callbacks=[evaluator]
)
# train_model.load_weights('best_model_v2.weights')
# train_model.fit(
# dev_generator.forfit(),
# steps_per_epoch=len(dev_generator),
# epochs=20,
# )
# train_model.save_weights('best_model_v2.weights')
else:
train_model.load_weights(model_save)
test_data = load_test_data('../baidu_data/duie_test2.json')
pred(test_data)