-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbaidu_ee.py
323 lines (286 loc) · 11.2 KB
/
baidu_ee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#! -*- coding: utf-8 -*-
# 百度LIC2020的事件抽取赛道,非官方baseline
# 直接用RoBERTa+CRF
# 在第一期测试集上能达到0.78的F1,优于官方baseline
import json
import numpy as np
from bert4keras.backend import keras, K, search_layer
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.snippets import open
from bert4keras.layers import ConditionalRandomField
from keras.layers import Dense
from keras.models import Model
from tqdm import tqdm
import pylcs
from keras.layers import Input, Dense, Embedding, LSTM, Bidirectional,GRU
from keras.optimizers import Optimizer
from tensorflow.keras.callbacks import LearningRateScheduler
import tensorflow as tf
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'] = '1'
# 基本信息
train=True #参数为True代表训练 参数为False代表为预测
maxlen = 220
epochs = 10
batch_size = 16
learning_rate = 1e-5
crf_lr_multiplier = 100 # 必要时扩大CRF层的学习率
model_save='best_model_v4.weights' #最好的成绩是模型2
# bert配置
config_path = '/home/maxin/roberta_wwm/bert_config.json'
checkpoint_path = '/home/maxin/roberta_wwm/bert_model.ckpt'
dict_path = '/home/maxin/roberta_wwm/vocab.txt'
def load_data(filename):
D = []
with open(filename) as f:
for l in f:
l = json.loads(l)
arguments = {}
for event in l['event_list']:
for argument in event['arguments']:
key = argument['argument']
value = (event['event_type'], argument['role'])
arguments[key] = value
D.append((l['text'], arguments))
print(D)
return D
# 读取数据
train_data = load_data('../baidu_ee/duee_train.json')
valid_data = load_data('../baidu_ee/duee_dev.json')
# 读取schema
with open('../baidu_ee/duee_event_schema.json') as f:
id2label, label2id, n = {}, {}, 0
for l in f:
l = json.loads(l)
for role in l['role_list']:
key = (l['event_type'], role['role'])
id2label[n] = key
label2id[key] = n
n += 1
num_labels = len(id2label) * 2 + 1
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
def search(pattern, sequence):
"""从sequence中寻找子串pattern
如果找到,返回第一个下标;否则返回-1。
"""
n = len(pattern)
for i in range(len(sequence)):
if sequence[i:i + n] == pattern:
return i
return -1
class data_generator(DataGenerator):
"""数据生成器
"""
def __iter__(self, random=False):
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
for is_end, (text, arguments) in self.sample(random):
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
labels = [0] * len(token_ids)
for argument in arguments.items():
a_token_ids = tokenizer.encode(argument[0])[0][1:-1]
start_index = search(a_token_ids, token_ids)
if start_index != -1:
labels[start_index] = label2id[argument[1]] * 2 + 1
for i in range(1, len(a_token_ids)):
labels[start_index + i] = label2id[argument[1]] * 2 + 2
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_labels.append(labels)
#print(batch_labels)
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = sequence_padding(batch_token_ids)
batch_segment_ids = sequence_padding(batch_segment_ids)
batch_labels = sequence_padding(batch_labels)
yield [batch_token_ids, batch_segment_ids], batch_labels
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
model = build_transformer_model(
config_path,
checkpoint_path,
model='roberta'
)
#lstm_output = Bidirectional(LSTM(num_labels//2, dropout=0.2, return_sequences=True))(model.output)
output = Dense(num_labels)(model.output)
CRF = ConditionalRandomField(lr_multiplier=crf_lr_multiplier)
output = CRF(output)
model = Model(model.input, output)
model.summary()
opt =Adam(learning_rate) #AccumOptimizer(Adam(learning_rate), 5) # 10是累积步数
#opt = tf.keras.optimizers.Adam(learning_rate)
#opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(
#opt,
#loss_scale='dynamic')
model.compile(
loss=CRF.sparse_loss,
optimizer=opt,
metrics=[CRF.sparse_accuracy]
)
def viterbi_decode(nodes, trans):
"""Viterbi算法求最优路径
其中nodes.shape=[seq_len, num_labels],
trans.shape=[num_labels, num_labels].
"""
labels = np.arange(num_labels).reshape((1, -1))
scores = nodes[0].reshape((-1, 1))
scores[1:] -= np.inf # 第一个标签必然是0
paths = labels
for l in range(1, len(nodes)):
M = scores + trans + nodes[l].reshape((1, -1))
idxs = M.argmax(0)
scores = M.max(0).reshape((-1, 1))
paths = np.concatenate([paths[:, idxs], labels], 0)
return paths[:, scores[:, 0].argmax()]
def extract_arguments(text):
"""arguments抽取函数
"""
tokens = tokenizer.tokenize(text)
while len(tokens) > 510:
tokens.pop(-2)
mapping = tokenizer.rematch(text, tokens)
token_ids = tokenizer.tokens_to_ids(tokens)
segment_ids = [0] * len(token_ids)
nodes = model.predict([[token_ids], [segment_ids]])[0]
trans = K.eval(CRF.trans)
labels = viterbi_decode(nodes, trans)
arguments, starting = [], False
for i, label in enumerate(labels):
if label > 0:
if label % 2 == 1:
starting = True
arguments.append([[i], id2label[(label - 1) // 2]])
elif starting:
arguments[-1][0].append(i)
else:
starting = False
else:
starting = False
return {
text[mapping[w[0]][0]:mapping[w[-1]][-1] + 1]: l
for w, l in arguments
}
def evaluate(data):
"""评测函数(跟官方评测结果不一定相同,但很接近)
"""
X, Y, Z = 1e-10, 1e-10, 1e-10
for text, arguments in tqdm(data):
inv_arguments = {v: k for k, v in arguments.items()}
pred_arguments = extract_arguments(text)
pred_inv_arguments = {v: k for k, v in pred_arguments.items()}
Y += len(pred_inv_arguments)
Z += len(inv_arguments)
for k, v in pred_inv_arguments.items():
if k in inv_arguments:
# 用最长公共子串作为匹配程度度量
l = pylcs.lcs(v, inv_arguments[k])
X += 2. * l / (len(v) + len(inv_arguments[k]))
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
return f1, precision, recall
def predict_to_file(in_file, out_file):
"""预测结果到文件,方便提交
"""
fw = open(out_file, 'w', encoding='utf-8')
with open("/home/maxin/baidu_data/baidu_ee/event_schema.json", 'r', encoding='UTF-8') as x:
event_dict = json.load(x)
x.close()
with open(in_file) as fr:
for l in tqdm(fr):
l = json.loads(l)
arguments = extract_arguments(l['text'])
event_list = []
for k, v in arguments.items():
event_list.append({
'event_type': v[0],
'trigger':v[0].split('-')[-1],
'trigger_start_index':0,
'arguments': [{
'argument_start_index':0,
'role': v[1],
'argument': k,
'class':event_dict.get(v[0])
}]
})
l['event_list'] = event_list
l = json.dumps(l, ensure_ascii=False)
fw.write(l + '\n')
fw.close()
class Evaluator(keras.callbacks.Callback):
"""评估和保存模型
"""
def __init__(self):
self.best_val_f1 = 0.
def on_epoch_end(self, epoch, logs=None):
f1, precision, recall = evaluate(valid_data)
if f1 >= self.best_val_f1:
self.best_val_f1 = f1
model.save_weights(model_save)
print(
'f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n' %
(f1, precision, recall, self.best_val_f1)
)
def adversarial_training(model, embedding_name, epsilon=1):
"""给模型添加对抗训练
其中model是需要添加对抗训练的keras模型,embedding_name
则是model里边Embedding层的名字。要在模型compile之后使用。
"""
if model.train_function is None: # 如果还没有训练函数
model._make_train_function() # 手动make
old_train_function = model.train_function # 备份旧的训练函数
# 查找Embedding层
for output in model.outputs:
embedding_layer = search_layer(output, embedding_name)
if embedding_layer is not None:
break
if embedding_layer is None:
raise Exception('Embedding layer not found')
# 求Embedding梯度
embeddings = embedding_layer.embeddings # Embedding矩阵
gradients = K.gradients(model.total_loss, [embeddings]) # Embedding梯度
gradients = K.zeros_like(embeddings) + gradients[0] # 转为dense tensor
# 封装为函数
inputs = (
model._feed_inputs + model._feed_targets + model._feed_sample_weights
) # 所有输入层
embedding_gradients = K.function(
inputs=inputs,
outputs=[gradients],
name='embedding_gradients',
) # 封装为函数
def train_function(inputs): # 重新定义训练函数
grads = embedding_gradients(inputs)[0] # Embedding梯度
delta = epsilon * grads / (np.sqrt((grads**2).sum()) + 1e-8) # 计算扰动
K.set_value(embeddings, K.eval(embeddings) + delta) # 注入扰动
outputs = old_train_function(inputs) # 梯度下降
K.set_value(embeddings, K.eval(embeddings) - delta) # 删除扰动
return outputs
model.train_function = train_function # 覆盖原训练函数
# 写好函数后,启用对抗训练只需要一行代码
#adversarial_training(model, 'Embedding-Token', 0.5)
if __name__ == '__main__':
if train==True:
train_generator = data_generator(train_data, batch_size)
dev_generator = data_generator(valid_data, batch_size)
evaluator = Evaluator()
#model.load_weights('best_model_v2.weights')
model.fit_generator(
train_generator.forfit(),
steps_per_epoch=len(train_generator),
epochs=epochs,
callbacks=[evaluator]
)
#model.load_weights(model_save)
#model.fit_generator(
# dev_generator.forfit(),
#steps_per_epoch=len(dev_generator),
#epochs=10,
#)
#model.save(model_save)
else:
model.load_weights(model_save)
predict_to_file('/home/maxin/baidu_data/baidu_ee/duee_test1.json', 'duee.json')
else:
model.load_weights(model_save)
# predict_to_file('/root/baidu/datasets/ee/test1_data/test1.json', 'ee_pred.json')