forked from worldmaking/node-gles3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample-sdfCubes.js
767 lines (639 loc) · 21.4 KB
/
example-sdfCubes.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
const assert = require("assert")
const { vec2, vec3, vec4, quat, mat2, mat2d, mat3, mat4} = require("gl-matrix")
const gl = require('./gles3.js')
const glfw = require('./glfw3.js')
const vr = require('./openvr.js')
const glutils = require('./glutils.js');
if (!glfw.init()) {
console.log("Failed to initialize GLFW");
process.exit(-1);
}
let version = glfw.getVersion();
console.log('glfw ' + version.major + '.' + version.minor + '.' + version.rev);
console.log('glfw version-string: ' + glfw.getVersionString());
// Open OpenGL window
glfw.defaultWindowHints();
glfw.windowHint(glfw.CONTEXT_VERSION_MAJOR, 3);
glfw.windowHint(glfw.CONTEXT_VERSION_MINOR, 3);
glfw.windowHint(glfw.OPENGL_FORWARD_COMPAT, 1);
glfw.windowHint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE);
let window = glfw.createWindow(1024, 1024, "Test");
if (!window) {
console.log("Failed to open GLFW window");
glfw.terminate();
process.exit(-1);
}
glfw.setWindowPos(window, 32, 32)
glfw.makeContextCurrent(window);
console.log(gl.glewInit());
console.log('GL ' + glfw.getWindowAttrib(window, glfw.CONTEXT_VERSION_MAJOR) + '.' + glfw.getWindowAttrib(window, glfw.CONTEXT_VERSION_MINOR) + '.' + glfw.getWindowAttrib(window, glfw.CONTEXT_REVISION) + " Core Profile?: " + (glfw.getWindowAttrib(window, glfw.OPENGL_PROFILE)==glfw.OPENGL_CORE_PROFILE));
// Enable vertical sync (on cards that support it)
glfw.swapInterval(1); // 0 for vsync off
let vertex_shader_lib = `
// http://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/
vec3 quat_rotate( vec4 q, vec3 v ){
return v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );
}
vec4 quat_rotate( vec4 q, vec4 v ){
return vec4(v.xyz + 2.0 * cross( q.xyz, cross( q.xyz, v.xyz ) + q.w * v.xyz), v.w );
}
// equiv. quat_rotate(quat_conj(q), v):
// q must be a normalized quaternion
vec3 quat_unrotate(in vec4 q, in vec3 v) {
// return quat_mul(quat_mul(quat_conj(q), vec4(v, w)), q).xyz;
// reduced:
vec4 p = vec4(
q.w*v.x - q.y*v.z + q.z*v.y, // x
q.w*v.y - q.z*v.x + q.x*v.z, // y
q.w*v.z - q.x*v.y + q.y*v.x, // z
q.x*v.x + q.y*v.y + q.z*v.z // w
);
return vec3(
p.w*q.x + p.x*q.w + p.y*q.z - p.z*q.y, // x
p.w*q.y + p.y*q.w + p.z*q.x - p.x*q.z, // y
p.w*q.z + p.z*q.w + p.x*q.y - p.y*q.x // z
);
}
// equiv. quat_rotate(quat_conj(q), v):
// q must be a normalized quaternion
vec4 quat_unrotate(in vec4 q, in vec4 v) {
// return quat_mul(quat_mul(quat_conj(q), vec4(v, w)), q).xyz;
// reduced:
vec4 p = vec4(
q.w*v.x - q.y*v.z + q.z*v.y, // x
q.w*v.y - q.z*v.x + q.x*v.z, // y
q.w*v.z - q.x*v.y + q.y*v.x, // z
q.x*v.x + q.y*v.y + q.z*v.z // w
);
return vec4(
p.w*q.x + p.x*q.w + p.y*q.z - p.z*q.y, // x
p.w*q.y + p.y*q.w + p.z*q.x - p.x*q.z, // y
p.w*q.z + p.z*q.w + p.x*q.y - p.y*q.x, // z
v.w
);
}
`
let fragment_shader_lib = `
////////////////////////////////
// Math
////////////////////////////////
#define PI 3.141592653589793
#define TWOPI 3.141592653589793*2.0
// Quantize a number
float quantize(float v, float s) {
return floor(v/s)*s;
}
// Maximum/minumum elements of a vector
float vmax(vec2 v) {
return max(v.x, v.y);
}
float vmax(vec3 v) {
return max(max(v.x, v.y), v.z);
}
float vmax(vec4 v) {
return max(max(v.x, v.y), max(v.z, v.w));
}
float vmin(vec2 v) {
return min(v.x, v.y);
}
float vmin(vec3 v) {
return min(min(v.x, v.y), v.z);
}
float vmin(vec4 v) {
return min(min(v.x, v.y), min(v.z, v.w));
}
vec3 closest_point_on_line_segment(vec3 P, vec3 A, vec3 B) {
vec3 AB = B-A;
float l2 = dot(AB, AB); // length squared
if (l2 < 0.000001) {
// line is too short, just use an endpoint
return A;
}
// Consider the line extending the segment,
// parameterized as A + t (AB).
// We find projection of point p onto the line.
// It falls where t = [(AP) . (AB)] / |AB|^2
vec3 AP = P-A;
float t = dot(AP, AB) / l2;
if (t < 0.0) {
return A; // off A end
} else if (t > 1.0) {
return B; // off B end
} else {
return A + t * AB; // on segment
}
}
////////////////////////////////
// Transformations
////////////////////////////////
vec3 pTranslate(vec3 p, vec3 t) {
return p + t;
}
// Rotate around a coordinate axis (i.e. in a plane perpendicular to that axis) by angle <a>.
// Read like this: R(p.xz, a) rotates "x towards z".
// This is fast if <a> is a compile-time constant and slower (but still practical) if not.
void pR(inout vec2 p, float a) {
p = cos(a)*p + sin(a)*vec2(p.y, -p.x);
}
vec2 pRot(in vec2 p, float a) {
p = cos(a)*p + sin(a)*vec2(p.y, -p.x);
return p;
}
vec3 pRotYZ(in vec3 p, float a) {
p.yz = cos(a)*p.yz + sin(a)*vec2(p.z, -p.y);
return p;
}
vec3 pRotXZ(in vec3 p, float a) {
p.xz = cos(a)*p.xz + sin(a)*vec2(p.z, -p.x);
return p;
}
vec3 pRotXY(in vec3 p, float a) {
p.xy = cos(a)*p.xy + sin(a)*vec2(p.y, -p.x);
return p;
}
//Rotate function by:
// http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
mat4 rotateY(float theta) {
float c = cos(theta);
float s = sin(theta);
return mat4(
vec4(c, 0, s, 0),
vec4(0, 1, 0, 0),
vec4(-s, 0, c, 0),
vec4(0, 0, 0, 1)
);
}
// Shortcut for 45-degrees rotation
void pR45(inout vec2 p) {
p = (p + vec2(p.y, -p.x))*sqrt(0.5);
}
// q must be a normalized quaternion
vec3 quat_rotate(vec4 q, vec3 v) {
vec4 p = vec4(
q.w*v.x + q.y*v.z - q.z*v.y, // x
q.w*v.y + q.z*v.x - q.x*v.z, // y
q.w*v.z + q.x*v.y - q.y*v.x, // z
-q.x*v.x - q.y*v.y - q.z*v.z // w
);
return vec3(
p.x*q.w - p.w*q.x + p.z*q.y - p.y*q.z, // x
p.y*q.w - p.w*q.y + p.x*q.z - p.z*q.x, // y
p.z*q.w - p.w*q.z + p.y*q.x - p.x*q.y // z
);
}
// equiv. quat_rotate(quat_conj(q), v):
// q must be a normalized quaternion
vec3 quat_unrotate(in vec4 q, in vec3 v) {
// return quat_mul(quat_mul(quat_conj(q), vec4(v, 0)), q).xyz;
// reduced:
vec4 p = vec4(
q.w*v.x - q.y*v.z + q.z*v.y, // x
q.w*v.y - q.z*v.x + q.x*v.z, // y
q.w*v.z - q.x*v.y + q.y*v.x, // z
q.x*v.x + q.y*v.y + q.z*v.z // w
);
return vec3(
p.w*q.x + p.x*q.w + p.y*q.z - p.z*q.y, // x
p.w*q.y + p.y*q.w + p.z*q.x - p.x*q.z, // y
p.w*q.z + p.z*q.w + p.x*q.y - p.y*q.x // z
);
}
// Repeat around the origin by a fixed angle.
// For easier use, num of repetitions is use to specify the angle.
float pModPolar(inout vec2 p, float repetitions) {
float angle = 2.*PI/repetitions;
float a = atan(p.y, p.x) + angle/2.;
float r = length(p);
float c = floor(a/angle);
a = mod(a,angle) - angle/2.;
p = vec2(cos(a), sin(a))*r;
// For an odd number of repetitions, fix cell index of the cell in -x direction
// (cell index would be e.g. -5 and 5 in the two halves of the cell):
if (abs(c) >= (repetitions/2.)) c = abs(c);
return c;
}
float pModPolarShift(inout vec2 p, float repetitions, float shift) {
float angle = 2.*PI/repetitions;
float a = atan(p.y, p.x) + angle/2.;
float r = length(p);
float c = floor(a/angle);
a = mod(a,angle) - angle/2.;
p = vec2(cos(a), sin(a))*r;
// For an odd number of repetitions, fix cell index of the cell in -x direction
// (cell index would be e.g. -5 and 5 in the two halves of the cell):
if (abs(c) >= (repetitions/2.)) c = abs(c);
return c;
}
//https://www.shadertoy.com/view/Xds3zN
vec3 opRep( vec3 p, vec3 c )
{
return mod(p,c)-0.5*c;
}
////////////////////////////////
// Combinations
////////////////////////////////
// min(a, b) : union
// max(a, b) : intersection
// max(a, -b) : subtraction (exclusion)
// polynomial smooth min (k = 0.1);
float smin( float a, float b, float k ) {
float h = clamp( 0.5+0.5*(b-a)/k, 0.0, 1.0 );
return mix( b, a, h ) - k*h*(1.0-h);
}
float smax( float a, float b, float k ) {
float k1 = k*k;
float k2 = 1./k1;
return log( exp(k2*a) + exp(k2*b) )*k1;
}
float ssub(in float A, in float B, float k) {
return smax(A, -B, k);
}
////////////////////////////////
// Shapes
////////////////////////////////
float fSphere(vec3 p, float r) {
return length(p) - r;
}
// Cylinder standing upright on the xz plane
float fCylinder(vec3 p, float r, float height) {
float d = length(p.xz) - r;
d = max(d, abs(p.y) - height);
return d;
}
// Capsule: A Cylinder with round caps on both sides
float fCapsule(vec3 p, float r, float c) {
return mix(length(p.xz) - r, length(vec3(p.x, abs(p.y) - c, p.z)) - r, step(c, abs(p.y)));
}
// i.e. distance to line segment, with smoothness r
float sdCapsule1(vec3 p, vec3 a, vec3 b, float r) {
vec3 p1 = closest_point_on_line_segment(p, a, b);
return distance(p, p1) - r;
}
/*p = position of ray
* a and b = endpoints of the line (capsule)
* ra = radius of a
* rb = radius of b
*/
float sdCapsule2(vec3 p, vec3 a, vec3 b, float ra, float rb) {
vec3 pa = p - a, ba = b - a;
float t = dot(pa,ba)/dot(ba,ba); // phase on line from a to b
float h = clamp( t, 0.0, 1.0 );
// basic distance:
vec3 rel = pa - ba*h;
float d = length(rel);
d = d - mix(ra, rb, h);
return d;
}
// Box: correct distance to corners
float fBox(vec3 p, vec3 b) {
vec3 d = abs(p) - b;
return length(max(d, vec3(0))) + vmax(min(d, vec3(0)));
}
// Signed distance function for a cube centered at the origin
// http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
float sdCube(in vec3 p, in vec3 r){
vec3 d = abs(p) - r;
// Assuming p is inside the cube, how far is it from the surface?
// Result will be negative or zero.
float inDist = min(max(d.x, max(d.y, d.z)), 0.0);
// Assuming p is outside the cube, how far is it from the surface?
// Result will be positive or zero.
float outDist = length(max(d, 0.0));
return inDist + outDist;
}
// iq has this version, which seems a lot simpler?
float sdEllipsoid1( in vec3 p, in vec3 r ) {
return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z);
}
//https://www.shadertoy.com/view/Xds3zN
float sdCone( in vec3 p, in vec3 c )
{
vec2 q = vec2( length(p.xz), p.y );
float d1 = -q.y-c.z;
float d2 = max( dot(q,c.xy), q.y);
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
`
let cubeprogram = glutils.makeProgram(gl,
`#version 330
uniform mat4 u_viewmatrix;
uniform mat4 u_projmatrix;
// instanced variable:
in vec4 i_pos;
in vec4 i_bounds; // xyz is bounding box, w is scale factor
in vec4 i_quat;
in vec3 a_position;
in vec3 a_normal;
in vec2 a_texCoord;
out vec3 v_normal;
out vec3 v_eyepos;
out vec3 v_raypos;
out vec3 v_raydir;
out vec4 v_quat;
out vec4 v_bounds;
out mat4 v_viewprojmatrix;
out vec4 v_world; // xyz is position, w is dist to camera
${vertex_shader_lib}
void main() {
vec4 vertex = vec4(a_position, 1.);
// apply instance transform:
vertex.xyz *= i_bounds.xyz;
vertex.xyz *= i_bounds.w;
vertex = quat_rotate(i_quat, vertex);
vertex.xyz += i_pos.xyz;
vec4 world = /*u_modelmatrix * */ vertex;
vec4 view = u_viewmatrix * world;
gl_Position = u_projmatrix * view;
// derive eyepos (worldspace)
v_eyepos = -(u_viewmatrix[3].xyz)*mat3(u_viewmatrix);
// derive ray (object space)
v_raypos = a_position.xyz * i_bounds.xyz;
v_raydir = (quat_unrotate(i_quat, world.xyz - v_eyepos));
// if we needed precision, refine this in frag shader based on the surface function
v_world = vec4(i_pos.xyz, length(view.xyz));
v_normal = vec3(/* mat3(u_modelmatrix) * */ quat_rotate(i_quat, a_normal));
v_quat = i_quat;
v_bounds = i_bounds;
v_viewprojmatrix = u_projmatrix * u_viewmatrix;
// // q: can we orient the boxes to always face the camera?
// mat3 viewmat = mat3(u_viewmatrix);
// mat3 unviewmat = transpose(viewmat);
// // vec3 viewX = vec3(viewmat[0][0], viewmat[1][0], viewmat[2][0]);
// // vec3 viewY = vec3(viewmat[0][1], viewmat[1][1], viewmat[2][1]);
// // vec3 viewZ = vec3(viewmat[0][2], viewmat[1][2], viewmat[2][2]);
// v_world_vertex = a_position * i_scale;
// v_world_vertex = unviewmat * v_world_vertex;
// //v_world_vertex = quat_rotate(i_quat, v_world_vertex);
// v_world_vertex = v_world_vertex + i_pos.xyz;
// // rotate to face camera:
// vec4 camera_position = u_viewmatrix * vec4(v_world_vertex, 1);
// gl_Position = u_projmatrix * camera_position;
// v_normal = quat_rotate(i_quat, a_normal); // world space
// // derive eye location in world space from current view matrix:
// // (could pass this in as a uniform instead...)
// v_eyepos = -(u_viewmatrix[3].xyz)*mat3(u_viewmatrix);
// v_viewprojmatrix = u_projmatrix * u_viewmatrix;
// // we want the raymarching to operate in object-local space:
// v_ray_origin = a_position;
// v_ray_direction = v_world_vertex - v_eyepos;
// //v_ray_direction = quat_unrotate(i_quat, v_ray_direction);
// v_world_orientation = vec4(0, 0, 0, 1);//i_quat;
}
`,
`#version 330
precision mediump float;
uniform vec2 u_nearfar;
in vec4 v_quat;
in vec4 v_world;
in vec4 v_bounds; // xyz, scale
//in vec4 v_color;
in vec3 v_normal;
in vec2 v_texCoord;
in vec3 v_eyepos, v_raypos, v_raydir;
in mat4 v_viewprojmatrix;
in vec4 v_debug;
out vec4 outColor;
${fragment_shader_lib}
float scene(vec3 p) {
float d0 = fSphere(p, 0.3);
float d1 = fCylinder(p, 0.4, 0.5);
float d2 = sdCapsule2(p, vec3(0., 0, -0.4), vec3(0., 0., -.4), 0.2, 0.3);
float d3 = sdCube(p, vec3(0.1, 0.2, 0.4));
//return d0;
return min(d0, d3);
}
vec2 texcoord(vec3 p) {
// get a texture coordinate from the scene
// a simple cheat is cylindrical mapping of p
vec3 pn = normalize(p);
// atan2(y,x)/2pi gives -0.5..0.5 range
return vec2(atan(pn.y, pn.x) * 0.159154943091895 + 0.5, pn.z);
}
mat3 tbn4(in vec3 p, float eps) {
vec2 e = vec2(-eps, eps);
// get four nearby points (tetrahedral distribution):
vec3 p1 = p + e.yxx, p2 = p + e.xxy, p3 = p + e.xyx, p4 = p + e.yyy;
// get distances at these points:
float t1 = scene(p + e.yxx), t2 = scene(p + e.xxy), t3 = scene(p + e.xyx), t4 = scene(p + e.yyy);
vec3 N = normalize(e.yxx*t1 + e.xxy*t2 + e.xyx*t3 + e.yyy*t4);
// get texcoords at these points:
vec2 tc1 = texcoord(p1), tc2 = texcoord(p2), tc3 = texcoord(p3), tc4 = texcoord(p4);
vec3 T = normalize(e.yxx*tc1.y + e.xxy*tc2.y + e.xyx*tc3.y + e.yyy*tc4.y);
// force it to be orthogonal:
T = normalize(T - N*dot(N,T));
// bitangent is orthogonal to both:
vec3 B = cross(N, T);//normalize(e.yxx*tc1.y + e.xxy*tc2.y + e.xyx*tc3.y + e.yyy*tc4.y);
return mat3(T, B, N);
}
// compute normal from a SDF gradient by sampling 4 tetrahedral points around a location p
// (cheaper than the usual technique of sampling 6 cardinal points)
// 'scene' should be the SDF evaluator 'float distance = scene(vec3 pos)''
// 'eps' is the distance to compare points around the location 'p'
// a smaller eps gives sharper edges, but it should be large enough to overcome sampling error
// in theory, the gradient magnitude of an SDF should everywhere = 1,
// but in practice this isn’t always held, so need to normalize() the result
vec3 normal4(in vec3 p, float eps) {
vec2 e = vec2(-eps, eps);
// tetrahedral points
float t1 = scene(p + e.yxx), t2 = scene(p + e.xxy), t3 = scene(p + e.xyx), t4 = scene(p + e.yyy);
vec3 n = (e.yxx*t1 + e.xxy*t2 + e.xyx*t3 + e.yyy*t4);
// normalize for a consistent SDF:
//return n / (4.*eps*eps);
// otherwise:
return normalize(n);
}
vec4 shade(vec3 p) {
const float EPS = 0.003;
vec4 outColor;
// get a texcoord from the surface
// ideally, the sdf itself would return a texcoord
vec2 tc = texcoord(p);
// for normal, we approximate it by testing the scene at nearby points
// for tangent/bitangent, we do the same, using texcoords for the surface orientation
mat3 TBN = tbn4(p, EPS);
// all of these are in object-space:
// rotate to world space
vec3 T = quat_rotate(v_quat, TBN[0]);
vec3 B = quat_rotate(v_quat, TBN[1]);
vec3 N = quat_rotate(v_quat, TBN[2]);
outColor = vec4(N*0.5+0.5, 1.);
outColor = vec4(T*0.5+0.5, 1.);
outColor = vec4(B*0.5+0.5, 1.);
// outColor = vec4( abs(dot(N, T)) ); // verify that N, T are orthogonal; should be zero
// outColor = vec4( abs(dot(N, B)) ); // verify that N, B are orthogonal; should be zero
// outColor = vec4( abs(dot(T, B)) ); // verify that B, T are orthogonal; should be zero
outColor = vec4(tc, 0., 1.);
// demo texture for debugging:
vec2 chk = mod(tc*2., 1.)-0.5;
float checker = sign(chk.x*chk.y)*0.5+0.5;
outColor = vec4(N*checker, 1.);
// now go ahead and do the lighting & texturing of choice
return outColor;
}
// p is the vec3 position of the surface at the fragment
// p should be in world-space
// viewProjectionMatrix would be typically passed in as a uniform
// assign result to gl_FragDepth:
float computeDepth(vec3 p, mat4 viewProjectionMatrix) {
float dfar = 1.;//gl_DepthRange.far;
float dnear = 0.;//gl_DepthRange.near;
vec4 clip_space_pos = viewProjectionMatrix * vec4(p, 1.);
float ndc_depth = clip_space_pos.z / clip_space_pos.w;
// standard perspective:
return (((dfar-dnear) * ndc_depth) + dnear + dfar) / 2.0;
}
void main() {
vec3 rd = normalize(v_raydir);
vec3 ro = v_raypos;
float scale = v_bounds.w;
vec3 worldpos = v_world.xyz;
float dist = v_world.w; // maybe used for fog etc.
#define STEPS 64
#define FAR 3.0
const float EPS = 1./float(STEPS);
vec3 p = ro;
float t = 0.;
int step = 0;
float d = 0.;
float d0 = 0.;
int contact = 0;
for (; step < STEPS && t < FAR; step++) {
p = ro + t*rd;
d = scene(p);
if (sign(d)*sign(d0) == -1.) { // surface crossing
contact++;
// render at corrected surface position:
p = ro + (t-abs(d))*rd;
// += for additive blending
// max() for max blending
// mix() for something in between
//outColor += shade(p) / float(contact);
//outColor = mix(outColor, shade(p), 1. / float(contact));
//outColor = max(outColor, shade(p)/ float(contact));
if (contact == 1) {
// first contact defines actual world position:
worldpos += quat_rotate(v_quat, p * scale);
}
//break; // break here for solid shape
}
d0 = d;
// always move forward:
t += max(EPS,abs(d));
}
float glow = float(step)/float(STEPS);
//outColor += vec4(glow*glow); // show halo
outColor = mix(outColor, vec4(glow), glow*glow);
// for deadzone:
if (contact == 0) {
outColor += vec4(0.25); // show bounding box
// discard;
}
gl_FragDepth = computeDepth(worldpos, v_viewprojmatrix);
//outColor = vec4(dist);
// outColor = vec4(v_pos);
// outColor = vec4(v_bounds);
// outColor = vec4(v_normal*0.5+0.5, 1.);
// //outColor = vec4(v_world);
// outColor = vec4(v_texCoord, 0., 1.);
// outColor = vec4(v_eyepos, 1.);
// outColor = vec4(v_raypos, 1.);
// outColor = vec4(v_raydir, 1.);
// outColor = vec4(rd, 1.);
// outColor = vec4(d);
// outColor = vec4(contact);
// outColor = vec4(t * float(contact) + glow);
//outColor = vec4(worldpos, 1.);
}
`);
// create a VAO from a basic geometry and shader
let cube = glutils.createVao(gl, glutils.makeCube({ min:-0.5, max:0.5, div: 8 }), cubeprogram.id);
// create a VBO & friendly interface for the instances:
// TODO: could perhaps derive the fields from the vertex shader GLSL?
let cubes = glutils.createInstances(gl, [
{ name:"i_pos", components:4 },
{ name:"i_quat", components:4 },
{ name:"i_bounds", components:4 },
], 100)
// the .instances provides a convenient interface to the underlying arraybuffer
cubes.instances.forEach(obj => {
// each field is exposed as a corresponding typedarray view
// making it easy to use other libraries such as gl-matrix
// this is all writing into one contiguous block of binary memory for all instances (fast)
vec4.set(obj.i_pos,
(Math.random()-0.5) * 20,
(Math.random()-0.5) * 20,
(Math.random()-0.9) * 20,
1
);
// xyz is bounding box, w is scale factor
let s = 1
vec4.set(obj.i_bounds, s, s, s, 1);
quat.random(obj.i_quat);
})
cubes.bind().submit().unbind();
// attach these instances to an existing VAO:
cubes.attachTo(cube);
let t = glfw.getTime();
let fps = 60;
function animate() {
if(glfw.windowShouldClose(window) || glfw.getKey(window, glfw.KEY_ESCAPE)) {
shutdown();
} else {
setImmediate(animate)
}
let t1 = glfw.getTime();
let dt = t1-t;
fps += 0.1*((1/dt)-fps);
t = t1;
glfw.setWindowTitle(window, `fps ${fps}`);
// Get window size (may be different than the requested size)
let dim = glfw.getFramebufferSize(window);
// update scene:
// pick a random instance:
let q = [0, 0, 0, 1]
for (let obj of cubes.instances) {
//let obj = cubes.instances[Math.floor(Math.random() * cubes.count)];
// change its orientation:
quat.random(q);
quat.slerp(obj.i_quat, obj.i_quat, q, 0.01);
// submit to GPU:
cubes.bind().submit().unbind()
}
// Compute the matrix
let viewmatrix = mat4.create();
let projmatrix = mat4.create();
let near = 0.01, far = 30;
let angle = t*0.3;
let dist = 4;
mat4.lookAt(viewmatrix, [dist*Math.sin(angle), 0, dist*Math.cos(angle)], [-dist*Math.sin(angle), 0, -dist*Math.cos(angle)], [0, 1, 0]);
mat4.perspective(projmatrix, Math.PI/2, dim[0]/dim[1], near, far);
gl.viewport(0, 0, dim[0], dim[1]);
gl.clearColor(0.1, 0.1, 0.1, 1);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.enable(gl.DEPTH_TEST)
gl.enable(gl.BLEND);
gl.blendEquation(gl.FUNC_ADD)
gl.blendFunc(gl.SRC_ALPHA, gl.ONE);
gl.blendFuncSeparate(gl.ONE, gl.ONE, gl.ZERO, gl.ONE_MINUS_SRC_ALPHA);
gl.depthMask(false)
gl.enable(gl.CULL_FACE)
cubeprogram.begin();
cubeprogram.uniform("u_viewmatrix", viewmatrix);
cubeprogram.uniform("u_projmatrix", projmatrix);
cubeprogram.uniform("u_nearfar", near, far);
cube.bind().drawInstanced(cubes.count).unbind()
cubeprogram.end();
gl.disable(gl.CULL_FACE)
gl.disable(gl.BLEND);
gl.depthMask(true)
// Swap buffers
glfw.swapBuffers(window);
glfw.pollEvents();
}
function shutdown() {
// Close OpenGL window and terminate GLFW
glfw.destroyWindow(window);
glfw.terminate();
process.exit(0);
}
animate();