-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
248 lines (161 loc) · 5.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
#function declarations
def sigmoid(s):
return 1/(1+np.exp(-float(s)));
#function to print the accuracy
def print_accuracy(weights,X,Y,candidate_weights):
#for val in weights:
#print val;
for o in range(0,len(weights)):
sum = 0.00;
for i in range(0,len(X)):
arr = [];
for j in range(0,len(candidate_weights)):
arr.append(candidate_value(j,X[i],candidate_weights));
arr = X[i]+arr;
calc_y = np.dot(weights[o],arr);
calc_y = sigmoid(calc_y);
if(calc_y>0.5):
calc_y = 1;
else:
calc_y = 0;
sum = sum+ abs(Y[i][o] - calc_y)*1.0;
error = (sum*1.0)/(num_inp*1.0);
accuracy = (1-error)*100.0;
print(str(o)+" "+str(accuracy));
return;
#logistic error function
def error(p,o,weights,X,Y):
f_w = sigmoid(np.dot(weights[o],X[p]));
err = Y[i][o]*(log(f_w))+(1-Y[i][o])*(log(1-f_w));
return err;
#intermediate function to calculate the correlation function
def E_x_y(o,new_candidate_weights,weights,X,Y):
E_x_y= 0;
for p in range(0,len(X)):
Vp = np.dot(new_candidate_weights,X[p]);
Vp = sigmoid(Vp);
E_x_y = E_x_y+Vp*error(p,o,weights,X,Y);
return E_x_y;
#intermediate function to calculate the correlation function
def E_x(o,new_candidate_weights,weights,X,Y):
E_x= 0;
for p in range(0,len(X)):
Vp = np.dot(new_candidate_weights,X[p]);
Vp = sigmoid(Vp);
E_x = E_x+Vp;
return E_x;
#intermediate function to calculate the correlation function
def E_y(o,new_candidate_weights,weights,X,Y):
E_y= 0;
for p in range(0,len(X)):
E_y = E_y+error(p,o,weights,X,Y);
return E_y;
#Correlation function between the error and the value of the candidate unit
def correlation(o,new_candidate_weights,weights,X,Y):
covariance = E_x_y(o,new_candidate_weights,weights,X,Y) - E_x(o,new_candidate_weights,weights,X,Y)*E_y(o,new_candidate_weights,weights,X,Y);
return covariance;
#sign function
def signum(s):
if(s>0):
s=1;
else:
if(s==0):
s=0;
else:
s=-1;
return s;
#recursive function to calculate the candidate value using candidate weights
def candidate_value(i,x,candidate_weights):
value = 0;
for j in range(0,len(candidate_weights[i])):
if(j<num_inp):
value = value+ candidate_weights[i][j]*x[j];
else:
value = value+candidate_weights[i][j]*candidate_value((j-num_inp),x,candidate_weights);
return value;
#Read Data from Train.csv file
train_file = open('balance.dat');
#Initialising matrices to store Training data set
X=[];
Y=[];
#Data set properties
num_feat = 0;
num_inp = 0;
num_out = 3;
num_hid_layer = 0;
b = 1.0;
learning_rate = 0.1;
threshold = 0.5;
#Reading the input file and Initialising the Training Data
for line in train_file:
arr = line.split(',');
num_feat = 0;
for val in arr:
arr[num_feat] = float(arr[num_feat]);
num_feat = num_feat+1;
num_feat = num_feat - num_out;
i=0;
for val in arr[num_feat:num_feat+3]:
arr[num_feat+i] = int(val);
i=i+1;
Y.append(arr[num_feat:num_feat+3]);
arr[0:num_feat].append(float(b));
num_feat = num_feat+1;
X.append(arr[0:num_feat]);
num_inp=num_inp+1;
#print(X);
#print(Y);
#initialising all weights to zeros
weights = [];
for o in range(0,num_out):
weights.append([0]*num_feat);
#building the Neural Network cascade
candidate_weights =[];
candidate_learning_rate = 0.1;
num_candidate_units = 0;
while(True):
#The learning algorithm for the currently built neural network
#single layer perceptron update with Gradient Descent using sigmoid activation function
while(True):
for o in range(0,num_out):
for i in range(0,num_inp):
arr = [];
for j in range(0,len(candidate_weights)):
arr.append(candidate_value(j,X[i],candidate_weights));
arr = X[i]+arr;
wt_x = np.dot(weights[o],arr);
f_w = sigmoid(wt_x);
fac = Y[i][o]-f_w;
fac = (fac*learning_rate)/(num_inp*1.0);
delta = [x*fac for x in arr];
weights[o]=np.add(weights[o],delta);
#print the error
print_accuracy(weights,X,Y,candidate_weights);
#Building the network by adding a new hidden layer
#create a new candidate unit connecting all the existing inputs and hidden units
new_candidate_weights = [];
for i in range(0,(num_feat+num_candidate_units)):
new_candidate_weights.append([0]*(num_feat+num_candidate_units));
#finding the weights of the candidate unit using Gradient ascent to maximise.....
#.....correlation between Candidate value and error
while(True):
for i in range(0,len(new_candidate_weights)):
ds_by_dwi = 0;
for o in range(0,len(weights)):
E_o = E_x(o,new_candidate_weights,weights,X,Y);
sigma = signum(covariance(o,new_candidate_weights,weights,X,Y));
for p in range(0,len(X)):
E_p_o = error(p,o,weights,X,Y);
I_i_p = new_candidate_weights[i]*X[p][i];
wt_v = np.dot(new_candidate_weights,X[p]);
fw_v = sigmoid(wt_v);
df_by_dp = fw_v*(1-fw_v);
ds_by_dwi = ds_by_dwi + (sigma*(E_p_o-E_o)*(df_by_dp)*I_i_p);
new_candidate_weights[i] = new_candidate_weights[i] + candidate_learning_rate*ds_by_dwi;
#fixing the weights of the candidate unit and dynamically adding it to the network
candidate_weights.append(new_candidate_weights);
num_candidate_units = num_candidate_units+1;
#convert the candidate unit into hidden unit
for o in range(0,len(weights)):
weights[o].append([0]);