-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtoken_classification.py
493 lines (418 loc) · 18.3 KB
/
token_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# Adapted from huggingface transformers classificaton scripts
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqeval.metrics import classification_report, accuracy_score
import glob
import datasets
import numpy as np
from datasets import ClassLabel, load_metric
from datasets.io.json import JsonDatasetReader
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorForTokenClassification,
EvalPrediction,
HfArgumentParser,
PretrainedConfig,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from normalizer import normalize
EXT2CONFIG = {
"jsonl": (JsonDatasetReader, {}),
"json": (JsonDatasetReader, {})
}
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
dataset_dir: Optional[str] = field(
default=None, metadata={
"help": "Path to the directory containing the data files. (.jsonl)"
"File datatypes will be identified with their prefix names as follows: "
"`train`- Training file(s) e.g. `train.jsonl`/ `train_part1.jsonl` etc. "
"`validation`- Evaluation file(s) e.g. `validation.jsonl`/ `validation_part1.jsonl` etc. "
"`test`- Test file(s) e.g. `test.jsonl`/ `test_part1.jsonl` etc. "
"All files for must have the same extension."
}
)
max_seq_length: int = field(
default=512,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv / tsv / jsonl file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv / tsv / jsonl file containing the validation data."}
)
test_file: Optional[str] = field(default=None, metadata={"help": "A csv / tsv / jsonl file containing the test data."})
do_normalize: Optional[bool] = field(default=True, metadata={"help": "Normalize text before feeding to the model."})
label_all_tokens: bool = field(
default=False,
metadata={
"help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
},
)
tokens_key: Optional[str] = field(
default="tokens", metadata={"help": "Key name in the input file corresponding to the tokens."}
)
tags_key: Optional[str] = field(
default="tags", metadata={"help": "Key name in the input file corresponding to the token labels/tags."}
)
def __post_init__(self):
if self.train_file is not None and self.validation_file is not None:
train_extension = self.train_file.split(".")[-1]
assert train_extension in ["csv", "jsonl", "tsv"], "`train_file` should be a csv / tsv / jsonl file."
validation_extension = self.validation_file.split(".")[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension csv / tsv / jsonl as `train_file`."
@dataclass
class ModelArguments:
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
has_ext = lambda path: len(os.path.basename(path).split(".")) > 1
get_ext = lambda path: os.path.basename(path).split(".")[-1]
if data_args.dataset_dir is not None:
data_files = {}
all_files = glob.glob(
os.path.join(
data_args.dataset_dir,
"*"
)
)
all_exts = [get_ext(k) for k in all_files if has_ext(k)]
if not all_exts:
raise ValueError("The `dataset_dir` doesnt have any valid file.")
selected_ext = max(set(all_exts), key=all_exts.count)
for search_prefix in ["train", "validation", "test"]:
found_files = glob.glob(
os.path.join(
data_args.dataset_dir,
search_prefix + "*" + selected_ext
)
)
if not found_files:
continue
data_files[search_prefix] = found_files
else:
data_files = {
"train": data_args.train_file,
"validation": data_args.validation_file,
"test": data_args.test_file
}
data_files = {k: v for k, v in data_files.items() if v is not None}
if not data_files:
raise ValueError("No valid input file found.")
selected_ext = get_ext(list(data_files.values())[0])
dataset_configs = EXT2CONFIG[selected_ext]
raw_datasets = dataset_configs[0](
data_files,
**dataset_configs[1]
).read()
for data_type, ds in raw_datasets.items():
assert data_args.tokens_key in ds.features, f"Input files doesnt have the `{data_args.tokens_key}` key"
if data_type != "test":
assert data_args.tags_key in ds.features, f"Input files doesnt have the `{data_args.tags_key}` key"
ignored_columns = set(ds.column_names) - set([data_args.tokens_key, data_args.tags_key])
raw_datasets[data_type] = ds.remove_columns(ignored_columns)
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
label_to_id = config.label2id if config.task_specific_params and config.task_specific_params.get("finetuned", False) else None
if label_to_id is None:
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
label_list = get_label_list(raw_datasets["train"][data_args.tags_key])
num_labels = len(label_list)
label_to_id = {v: i for i, v in enumerate(label_list)}
config.label2id = label_to_id
config.id2label = {id: label for label, id in config.label2id.items()}
config.task_specific_params = {"finetuned": True}
else:
label_list = list(label_to_id.keys())
num_labels = len(label_list)
tokenizer_kwargs = {"add_prefix_space": True} if config.model_type in {"gpt2", "roberta"} else {}
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
**tokenizer_kwargs
)
model = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir
)
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
if data_args.do_normalize:
def normalize_example(example):
for i, token in enumerate(example[data_args.tokens_key]):
normalized_token = normalize(token)
if len(normalized_token) > 0:
example[data_args.tokens_key][i] = normalized_token
return example
raw_datasets = raw_datasets.map(
normalize_example,
desc="Running normalization on dataset",
load_from_cache_file=not data_args.overwrite_cache
)
# Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples[data_args.tokens_key],
padding=padding,
truncation=True,
max_length=max_seq_length,
is_split_into_words=True,
)
labels = []
for i, label in enumerate(examples[data_args.tags_key]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
if word_idx is None:
label_ids.append(-100)
elif word_idx != previous_word_idx:
label_ids.append(label_to_id[label[word_idx]])
else:
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
with training_args.main_process_first(desc="dataset map pre-processing"):
raw_datasets = raw_datasets.map(
tokenize_and_align_labels,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
def compute_metrics(p: EvalPrediction):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
report = classification_report(
y_true=true_labels,
y_pred=true_predictions,
output_dict=True
)
scores = {
type_name: {
"precision": score["precision"],
"recall": score["recall"],
"f1": score["f1-score"],
"number": score["support"],
}
for type_name, score in report.items()
}
scores["overall_accuracy"] = accuracy_score(y_true=true_labels, y_pred=true_predictions)
final_results = {}
for key, value in scores.items():
if isinstance(value, dict):
for n, v in value.items():
key = key.replace(" ", "_")
n = n.replace(" ", "_")
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model()
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(eval_dataset=eval_dataset)
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
# Save predictions
output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
if trainer.is_world_process_zero():
with open(output_predictions_file, "w") as writer:
for prediction in true_predictions:
writer.write(" ".join(prediction) + "\n")
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()