-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_graph_classification.py
145 lines (122 loc) · 5.59 KB
/
main_graph_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import glob
import os
import time
import torch
import torch.nn.functional as F
from models import GraphClassificationModel
from torch.utils.data import random_split
from torch_geometric.data import DataLoader
from torch_geometric.datasets import TUDataset
from torch_geometric.transforms import OneHotDegree
from torch_geometric.utils import degree
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=777, help='random seed')
parser.add_argument('--batch_size', type=int, default=512, help='batch size')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--weight_decay', type=float, default=0.001, help='weight decay')
parser.add_argument('--nhid', type=int, default=128, help='hidden size')
parser.add_argument('--sample_neighbor', type=bool, default=True, help='whether sample neighbors')
parser.add_argument('--sparse_attention', type=bool, default=True, help='whether use sparse attention')
parser.add_argument('--structure_learning', type=bool, default=False, help='whether perform structure learning')
parser.add_argument('--hop_connection', type=bool, default=False, help='whether directly connect node within h-hops')
parser.add_argument('--hop', type=int, default=3, help='h-hops')
parser.add_argument('--pooling_ratio', type=float, default=0.8, help='pooling ratio')
parser.add_argument('--dropout_ratio', type=float, default=0.0, help='dropout ratio')
parser.add_argument('--lamb', type=float, default=2.0, help='trade-off parameter')
parser.add_argument('--dataset', type=str, default='IMDB-MULTI', help='DD/PROTEINS/NCI1/NCI109/Mutagenicity/ENZYMES')
parser.add_argument('--device', type=str, default='cuda:1', help='specify cuda devices')
parser.add_argument('--epochs', type=int, default=1000, help='maximum number of epochs')
parser.add_argument('--patience', type=int, default=100, help='patience for early stopping')
args = parser.parse_args()
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
if args.dataset == 'IMDB-MULTI' or args.dataset == 'REDDIT-MULTI-12K':
dataset = TUDataset('data/', name=args.dataset)
max_degree = 0
for g in dataset:
if g.edge_index.size(1) > 0:
max_degree = max(max_degree, int(degree(g.edge_index[0]).max().item()))
dataset.transform = OneHotDegree(max_degree)
args.num_classes = dataset.num_classes
args.num_features = dataset.num_features
else:
dataset = TUDataset('data/', name=args.dataset, use_node_attr=True)
args.num_classes = dataset.num_classes
args.num_features = dataset.num_features
print(args)
num_training = int(len(dataset) * 0.8)
num_val = int(len(dataset) * 0.1)
num_test = len(dataset) - (num_training + num_val)
training_set, validation_set, test_set = random_split(dataset, [num_training, num_val, num_test])
train_loader = DataLoader(training_set, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(validation_set, batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False)
model = GraphClassificationModel(args).to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
def train():
min_loss = 1e10
patience_cnt = 0
val_loss_values = []
best_epoch = 0
t = time.time()
model.train()
for epoch in range(args.epochs):
loss_train = 0.0
correct = 0
for i, data in enumerate(train_loader):
optimizer.zero_grad()
data = data.to(args.device)
out = model(data)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
loss_train += loss.item()
pred = out.max(dim=1)[1]
correct += pred.eq(data.y).sum().item()
acc_train = correct / len(train_loader.dataset)
acc_val, loss_val = compute_test(val_loader)
print('Epoch: {:04d}'.format(epoch + 1), 'loss_train: {:.6f}'.format(loss_train),
'acc_train: {:.6f}'.format(acc_train), 'loss_val: {:.6f}'.format(loss_val),
'acc_val: {:.6f}'.format(acc_val), 'time: {:.6f}s'.format(time.time() - t))
val_loss_values.append(loss_val)
torch.save(model.state_dict(), '{}.pth'.format(epoch))
if val_loss_values[-1] < min_loss:
min_loss = val_loss_values[-1]
best_epoch = epoch
patience_cnt = 0
else:
patience_cnt += 1
if patience_cnt == args.patience:
break
files = glob.glob('*.pth')
for f in files:
epoch_nb = int(f.split('.')[0])
if epoch_nb < best_epoch:
os.remove(f)
files = glob.glob('*.pth')
for f in files:
epoch_nb = int(f.split('.')[0])
if epoch_nb > best_epoch:
os.remove(f)
print('Optimization Finished! Total time elapsed: {:.6f}'.format(time.time() - t))
return best_epoch
def compute_test(loader):
model.eval()
correct = 0.0
loss_test = 0.0
for data in loader:
data = data.to(args.device)
out = model(data)
pred = out.max(dim=1)[1]
correct += pred.eq(data.y).sum().item()
loss_test += F.nll_loss(out, data.y).item()
return correct / len(loader.dataset), loss_test
if __name__ == '__main__':
# Model training
best_model = train()
# Restore best model for test set
model.load_state_dict(torch.load('{}.pth'.format(best_model)))
test_acc, test_loss = compute_test(test_loader)
print('Test set results, loss = {:.6f}, accuracy = {:.6f}'.format(test_loss, test_acc))