You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[ Upstream commit 3172fb9 ]
There may be concurrency between perf_cgroup_switch and
perf_cgroup_event_disable. Consider the following scenario: after a new
perf cgroup event is created on CPU0, the new event may not trigger
a reprogramming, causing ctx->is_active to be 0. In this case, when CPU1
disables this perf event, it executes __perf_remove_from_context->
list _del_event->perf_cgroup_event_disable on CPU1, which causes a race
with perf_cgroup_switch running on CPU0.
The following describes the details of this concurrency scenario:
CPU0 CPU1
perf_cgroup_switch:
...
# cpuctx->cgrp is not NULL here
if (READ_ONCE(cpuctx->cgrp) == NULL)
return;
perf_remove_from_context:
...
raw_spin_lock_irq(&ctx->lock);
...
# ctx->is_active == 0 because reprogramm is not
# tigger, so CPU1 can do __perf_remove_from_context
# for CPU0
__perf_remove_from_context:
perf_cgroup_event_disable:
...
if (--ctx->nr_cgroups)
...
# this warning will happened because CPU1 changed
# ctx.nr_cgroups to 0.
WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
[peterz: use guard instead of goto unlock]
Fixes: db4a835 ("perf/core: Set cgroup in CPU contexts for new cgroup events")
Signed-off-by: Luo Gengkun <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
0 commit comments