forked from edgi-govdata-archiving/ECHO_modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_set_presets.py
304 lines (270 loc) · 8.61 KB
/
data_set_presets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
SPATIAL_TABLES = {
"HUC8 Watersheds": dict(
table_name="wbdhu8",
id_field="huc8"
),
"HUC10 Watersheds": dict(
table_name="wbdhu10",
id_field="huc10"
),
"HUC12 Watersheds": dict(
table_name="wbdhu12",
id_field="huc12"
),
#"Ecoregions": dict(
# table_name="eco_level3",
# id_field="US_L3NAME" #e.g. Atlantic Coastal Pine Barrens
#
#),
#"Counties": dict(
# table_name="tl_2019_us_county",
# id_field="GEOID" # four or five digit code corresponding to two digit state number (e.g. 55) and 2-3 digit county code!
#
#),
"Zip Codes": dict(
table_name="tl_2019_us_zcta510",
id_field="zcta5ce10"
),
"EPA Regions": dict(
table_name="epa_regions",
id_field="eparegion" # In the form of "Region 1", "Region 2", up to "Region 10"
),
"States": dict(
table_name = "tl_2019_us_state",
id_field = "STUSPS" # e.g. MS, IA, AK
),
"Congressional Districts": dict(
table_name = "tl_2019_us_cd116",
id_field = "GEOID" # this is the combination of the state id and the CD e.g. AR-2 = 0502
)
}
# The keys of this dictionary are the preset names and the values are
# dictionaries of the constructor arguments for `DataSet` that should be used
# when creating one based on the preset.
ATTRIBUTE_TABLES = {
"Facilities": dict(
idx_field="REGISTRY_ID",
base_table="ECHO_EXPORTER",
table_name="ECHO_EXPORTER",
echo_type="",
date_field="",
date_format="%m/%d/%Y",
agg_type="count",
agg_col="",
unit=""
),
"RCRA Violations": dict(
idx_field="ID_NUMBER",
base_table="RCRA_VIOLATIONS",
table_name="RCRA_VIOLATIONS_MVIEW",
echo_type="RCRA",
date_field="DATE_VIOLATION_DETERMINED",
date_format="%m/%d/%Y",
agg_type="count",
agg_col="VIOL_DETERMINED_BY_AGENCY",
unit="violations"
),
"RCRA Inspections": dict(
idx_field="ID_NUMBER",
base_table="RCRA_EVALUATIONS",
table_name="RCRA_EVALUATIONS_MVIEW",
echo_type="RCRA",
date_field="EVALUATION_START_DATE",
date_format="%m/%d/%Y",
agg_type="count",
agg_col="EVALUATION_AGENCY",
unit="inspections"
),
"RCRA Penalties": dict(
echo_type="RCRA",
base_table="RCRA_ENFORCEMENTS",
table_name="RCRA_ENFORCEMENTS_MVIEW",
idx_field="ID_NUMBER",
date_field="ENFORCEMENT_ACTION_DATE",
date_format="%m/%d/%Y",
agg_type="sum",
agg_col="FMP_AMOUNT",
unit="dollars"
),
"ICIS EPA Inspections": dict(
echo_type="AIR",
base_table="ICIS_FEC_EPA_INSPECTIONS",
table_name="AIR_INSPECTIONS_MVIEW",
idx_field="REGISTRY_ID",
date_field="ACTUAL_END_DATE",
date_format="%m/%d/%Y",
agg_type="count",
agg_col="ACTIVITY_TYPE_DESC",
unit="inspections"
),
"CAA Violations": dict(
echo_type="AIR",
base_table="ICIS-AIR_VIOLATION_HISTORY",
table_name="AIR_VIOLATIONS_MVIEW",
idx_field="PGM_SYS_ID",
date_field="Date",
date_format="%m-%d-%Y",
agg_type="count",
agg_col="AGENCY_TYPE_DESC",
unit="violations"
),
"CAA Penalties": dict(
echo_type="AIR",
base_table="ICIS-AIR_FORMAL_ACTIONS",
table_name="AIR_FORMAL_ACTIONS_MVIEW",
idx_field="PGM_SYS_ID",
date_field="SETTLEMENT_ENTERED_DATE",
date_format="%m/%d/%Y",
agg_type="sum",
agg_col="PENALTY_AMOUNT",
unit="dollars"
),
"CAA Inspections": dict(
echo_type="AIR",
base_table="ICIS-AIR_FCES_PCES",
table_name="AIR_COMPLIANCE_MVIEW",
idx_field="PGM_SYS_ID",
date_field="ACTUAL_END_DATE",
date_format="%m-%d-%Y",
agg_type="count",
agg_col="STATE_EPA_FLAG",
unit="inspections"
),
"Combined Air Emissions": dict(
echo_type=["GHG","TRI"],
base_table="POLL_RPT_COMBINED_EMISSIONS",
table_name="COMBINED_AIR_EMISSIONS_MVIEW",
idx_field="REGISTRY_ID",
date_field="REPORTING_YEAR",
date_format="%Y"
),
"Greenhouse Gas Emissions": dict(
echo_type="GHG",
base_table="POLL_RPT_COMBINED_EMISSIONS",
table_name="GREENHOUSE_GASES_MVIEW",
idx_field="REGISTRY_ID",
date_field="REPORTING_YEAR",
date_format="%Y",
agg_type="sum",
agg_col="ANNUAL_EMISSION",
unit="metric tons of CO2 equivalent"
),
"Toxic Releases": dict(
echo_type="TRI",
base_table="POLL_RPT_COMBINED_EMISSIONS",
table_name="TOXIC_RELEASES_MVIEW",
idx_field="REGISTRY_ID",
date_field="REPORTING_YEAR",
date_format="%Y"
),
"CWA Violations": dict(
echo_type="NPDES",
base_table="NPDES_QNCR_HISTORY",
table_name="WATER_QUARTERLY_VIOLATIONS_MVIEW",
idx_field="NPDES_ID",
date_field="YEARQTR",
date_format="%Y",
agg_type="sum",
agg_col="NUME90Q",
unit="effluent violations"
),
"CWA Inspections": dict(
echo_type="NPDES",
base_table="NPDES_INSPECTIONS",
table_name="CLEAN_WATER_INSPECTIONS_MVIEW",
idx_field="NPDES_ID",
date_field="ACTUAL_END_DATE",
date_format="%m/%d/%Y",
agg_type="count",
agg_col="STATE_EPA_FLAG",
unit="inspections"
),
"CWA Penalties": dict(
echo_type="NPDES",
base_table="NPDES_FORMAL_ENFORCEMENT_ACTIONS",
table_name="CLEAN_WATER_ENFORCEMENT_ACTIONS_MVIEW",
idx_field="NPDES_ID",
date_field="SETTLEMENT_ENTERED_DATE",
date_format="%m/%d/%Y",
agg_type="sum",
agg_col="FED_PENALTY_ASSESSED_AMT",
unit="dollars"
),
"SDWA Site Visits": dict(
echo_type="SDWA",
base_table="SDWA_SITE_VISITS",
table_name="SDWA_SITE_VISITS_MVIEW",
idx_field="PWSID",
date_field="SITE_VISIT_DATE",
date_format="%m/%d/%Y"
),
"SDWA Enforcements": dict(
echo_type="SDWA",
base_table="SDWA_ENFORCEMENTS",
table_name="SDWA_ENFORCEMENTS_MVIEW",
idx_field="PWSID",
date_field="ENFORCEMENT_DATE",
date_format="%m/%d/%Y"
),
"SDWA Public Water Systems": dict(
echo_type="SDWA",
base_table="SDWA_PUB_WATER_SYSTEMS",
table_name="SDWA_PUB_WATER_SYSTEMS_MVIEW",
idx_field="PWSID",
date_field="FISCAL_YEAR",
date_format="%Y"
),
"SDWA Violations": dict(
echo_type="SDWA",
base_table="SDWA_VIOLATIONS",
table_name="SDWA_VIOLATIONS_MVIEW",
idx_field="PWSID",
date_field="FISCAL_YEAR",
date_format="%Y"
),
"SDWA Serious Violators": dict(
echo_type="SDWA",
base_table="SDWA_SERIOUS_VIOLATORS",
table_name="SDWA_SERIOUS_VIOLATORS_MVIEW",
idx_field="PWSID",
date_field="FISCAL_YEAR",
date_format="%Y"
),
"DMRs": dict(
echo_type="NPDES",
base_table="NPDES_DMRS_FY2020",
table_name="DMRS_FY2020_MVIEW",
idx_field="EXTERNAL_PERMIT_NMBR",
date_field="MONITORING_PERIOD_END_DATE",
date_format="%m/%d/%Y",
agg_type="sum",
agg_col="LIMIT_VALUE_NMBR", #we need to take a closer look and think through how to summarize this info, since it addresses a vast array of chemicals and differing units of measure
unit="units" #differing units of measure, which can be found in the LIMIT_UNIT_DESC field
),
"2020 Discharge Monitoring": dict(
echo_type="NPDES",
base_table="NPDES_DMRS_FY2020",
table_name="DMR_FY2020_MVIEW",
idx_field="EXTERNAL_PERMIT_NMBR",
date_field="LIMIT_BEGIN_DATE",
date_format="%m/%d/%Y",
),
# "SDWA Return to Compliance": dict(
# echo_type="SDWA",
# table_name="SDWA_RETURN_TO_COMPLIANCE",
# idx_field="PWSID",
# date_field="FISCAL_YEAR",
# date_format="%Y"
# )
}
REGIONS = {
'States': { "field": 'FAC_STATE' },
'Congressional Districts': { "field": 'FAC_DERIVED_CD113' },
'Counties': { "field": 'FAC_COUNTY' },
'Zip Codes': { "field": 'FAC_ZIP' },
'HUC8 Watersheds': {"field": 'FAC_DERIVED_HUC'},
'HUC12 Watersheds': {"field": 'FAC_DERIVED_WBD'},
#'Census Block': {"field": 'FAC_DERIVED_CB2010'} # No spatial data available yet
}
def get_attribute_tables():
return ATTRIBUTE_TABLES