forked from edgi-govdata-archiving/ECHO_modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
643 lines (553 loc) · 18.5 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
'''
Provide a number of utility Python functions that can de-clutter
the Jupyter notebooks that use them.
'''
# Import libraries
import pdb
import os
import csv
import datetime
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import folium
import urllib
import seaborn as sns
from folium.plugins import FastMarkerCluster
import ipywidgets as widgets
from ipywidgets import interact, interactive, fixed, interact_manual, Layout
from ECHO_modules.get_data import get_echo_data
from ECHO_modules.geographies import region_field, states
from IPython.display import display
# Set up some default parameters for graphing
from matplotlib import cycler
colour = "#00C2AB" # The default colour for the barcharts
colors = cycler('color',
['#4FBBA9', '#E56D13', '#D43A69',
'#25539f', '#88BB44', '#FFBBBB'])
plt.rc('axes', facecolor='#E6E6E6', edgecolor='none',
axisbelow=True, grid=True, prop_cycle=colors)
plt.rc('grid', color='w', linestyle='solid')
plt.rc('xtick', direction='out', color='gray')
plt.rc('ytick', direction='out', color='gray')
plt.rc('patch', edgecolor='#E6E6E6')
plt.rc('lines', linewidth=2)
font = {'family' : 'DejaVu Sans',
'weight' : 'normal',
'size' : 16}
plt.rc('font', **font)
plt.rc('legend', fancybox = True, framealpha=1, shadow=True, borderpad=1)
def fix_county_names( in_counties ):
'''
ECHO_EXPORTER has counties listed both as ALAMEDA and ALAMEDA COUNTY, seemingly
for every county. We drop the 'COUNTY' so they only get listed once.
Parameters
----------
in_counties : list of county names (str)
Returns
-------
list
The list of counties without duplicates
'''
counties = []
for county in in_counties:
if (county.endswith( ' COUNTY' )):
county = county[:-7]
counties.append( county.strip() )
counties = np.unique( counties )
return counties
def show_region_type_widget():
'''
Create and return a dropdown list of types of regions
Returns
-------
widget
The dropdown widget with the list of regions
'''
style = {'description_width': 'initial'}
select_region_widget = widgets.Dropdown(
options=region_field.keys(),
style=style,
value='County',
description='Region of interest:',
disabled=False
)
display( select_region_widget )
return select_region_widget
def show_state_widget():
'''
Create and return a dropdown list of states
Returns
-------
widget
The dropdown widget with the state list
'''
dropdown_state=widgets.Dropdown(
options=states,
description='State:',
disabled=False,
)
display( dropdown_state )
return dropdown_state
def show_pick_region_widget( type, state_widget=None ):
'''
Create and return a dropdown list of regions appropriate
to the input parameters
Parameters
----------
type : str
The type of region
state_widget : widget
The widget in which a state may have been selected
Returns
-------
widget
The dropdown widget with region choices
'''
region_widget = None
if ( type != 'Zip Code' ):
if ( state_widget is None ):
print( "You must first choose a state." )
return
my_state = state_widget.value
if ( type == 'Zip Code' ):
region_widget = widgets.Text(
value='98225',
description='Zip Code:',
disabled=False
)
elif ( type == 'County' ):
df = pd.read_csv( 'ECHO_modules/state_counties.csv' )
counties = df[df['FAC_STATE'] == my_state]['FAC_COUNTY']
region_widget=widgets.SelectMultiple(
options=fix_county_names( counties ),
description='County:',
disabled=False
)
elif ( type == 'Congressional District' ):
df = pd.read_csv( 'ECHO_modules/state_cd.csv' )
cds = df[df['FAC_STATE'] == my_state]['FAC_DERIVED_CD113']
region_widget=widgets.SelectMultiple(
options=cds.to_list(),
description='District:',
disabled=False
)
if ( region_widget is not None ):
display( region_widget )
return region_widget
def get_regions_selected( region_type, region_widget ):
'''
The region_widget may have multiple selections.
Depending on its region_type, extract the selections
and return them.
Parameters
----------
region_type : string
'Zip Code', 'Congressional District', 'County'
region_widget : widget
The widget that will contain the selections.
Returns
-------
list
The selections
'''
selections = list()
if ( region_type == 'Zip Code' ):
selections = region_widget.value.split(',')
else:
selections = list( region_widget.value )
return selections
def show_data_set_widget( data_sets ):
'''
Create and return a dropdown list of data sets with appropriate
flags set in the echo_data.
Parameters
----------
data_sets : dict
The data sets, key = name, value = DataSet object
Returns
-------
widget
The widget with data set choices
'''
data_set_choices = list( data_sets.keys() )
data_set_widget=widgets.Dropdown(
options=list(data_set_choices),
description='Data sets:',
disabled=False,
)
display(data_set_widget)
return data_set_widget
def show_fac_widget( fac_series ):
'''
Create and return a dropdown list of facilities from the
input Series
Parameters
----------
fac_series : Series
The facilities to be shown. It may have duplicates.
Returns
-------
widget
The widget with facility names
'''
fac_list = fac_series.dropna().unique()
fac_list.sort()
style = {'description_width': 'initial'}
widget=widgets.SelectMultiple(
options=fac_list,
style=style,
layout=Layout(width='70%'),
description='Facility Name:',
disabled=False,
)
display(widget)
return widget
def get_active_facilities( state, region_type, regions_selected ):
'''
Get a Dataframe with the ECHO_EXPORTER facilities with FAC_ACTIVE_FLAG
set to 'Y' for the region selected.
Parameters
----------
state : str
The state, which could be None
region_type : str
The type of region: 'State', 'Congressional District', etc.
regions_selected : list
The selected regions of the specified region_type
Returns
-------
Dataframe
The active facilities returned from the database query
'''
if ( region_type == 'State' ):
sql = 'select * from "ECHO_EXPORTER" where "FAC_STATE" = \'{}\''
sql += ' and "FAC_ACTIVE_FLAG" = \'Y\''
sql = sql.format( state )
df_active = get_echo_data( sql, 'REGISTRY_ID' )
elif ( region_type == 'Congressional District'):
cd_str = ",".join( map( lambda x: str(x), regions_selected ))
sql = 'select * from "ECHO_EXPORTER" where "FAC_STATE" = \'{}\''
sql += ' and "FAC_DERIVED_CD113" in ({})'
sql += ' and "FAC_ACTIVE_FLAG" = \'Y\''
sql = sql.format( state, cd_str )
df_active = get_echo_data( sql, 'REGISTRY_ID' )
elif ( region_type == 'County' ):
# Single items in a list will have a comma at the end that trips up
# the query. Convert the regions_selected list to a string.
regions = "'" + "','".join( regions_selected ) + "'"
sql = 'select * from "ECHO_EXPORTER" where "FAC_STATE" = \'{}\''
sql += ' and "FAC_COUNTY" in ({})'
sql += ' and "FAC_ACTIVE_FLAG" = \'Y\''
sql = sql.format( state, regions )
df_active = get_echo_data( sql, 'REGISTRY_ID' )
elif ( region_type == 'Zip Code' ):
sql = 'select * from "ECHO_EXPORTER" where "FAC_ZIP" = \'{}\''
sql += ' and "FAC_ACTIVE_FLAG" = \'Y\''
sql = sql.format( regions_selected )
df_active = get_echo_data( sql, 'REGISTRY_ID' )
else:
df_active = None
return df_active
def marker_text( row, no_text ):
'''
Create a string with information about the facility or program instance.
Parameters
----------
row : Series
Expected to contain FAC_NAME and DFR_URL fields from ECHO_EXPORTER
no_text : Boolean
If True, don't put any text with the markers, which reduces chance of errors
Returns
-------
str
The text to attach to the marker
'''
text = ""
if ( no_text ):
return text
if ( type( row['FAC_NAME'] == str )) :
try:
text = row["FAC_NAME"] + ' - '
except TypeError:
print( "A facility was found without a name. ")
if 'DFR_URL' in row:
text += " - <p><a href='"+row["DFR_URL"]
text += "' target='_blank'>Link to ECHO detailed report</a></p>"
return text
def check_bounds( row, bounds ):
'''
See if the FAC_LAT and FAC_LONG of the row are interior to
the minx, miny, maxx, maxy of the bounds.
Parameters
----------
row : Series
Must contain FAC_LAT and FAC_LONG
bounds : Dataframe
Bounding rectangle--minx,miny,maxx,maxy
Returns
-------
True if the row's point is in the bounds
'''
if ( row['FAC_LONG'] < bounds.minx[0] or row['FAC_LAT'] < bounds.miny[0] \
or row['FAC_LONG'] > bounds.maxx[0] or row['FAC_LAT'] > bounds.maxy[0]):
return False
return True
def mapper(df, bounds=None, no_text=False):
'''
Display a map of the Dataframe passed in.
Based on https://medium.com/@bobhaffner/folium-markerclusters-and-fastmarkerclusters-1e03b01cb7b1
Parameters
----------
df : Dataframe
The facilities to map. They must have a FAC_LAT and FAC_LONG field.
bounds : Dataframe
A bounding rectangle--minx, miny, maxx, maxy. Discard points outside.
Returns
-------
folium.Map
'''
# Initialize the map
m = folium.Map(
location = [df.mean()["FAC_LAT"], df.mean()["FAC_LONG"]]
)
# Create the Marker Cluster array
#kwargs={"disableClusteringAtZoom": 10, "showCoverageOnHover": False}
mc = FastMarkerCluster("")
# Add a clickable marker for each facility
for index, row in df.iterrows():
if ( bounds is not None ):
if ( not check_bounds( row, bounds )):
continue
mc.add_child(folium.CircleMarker(
location = [row["FAC_LAT"], row["FAC_LONG"]],
popup = marker_text( row, no_text ),
radius = 8,
color = "black",
weight = 1,
fill_color = "orange",
fill_opacity= .4
))
m.add_child(mc)
bounds = m.get_bounds()
m.fit_bounds(bounds)
# Show the map
return m
def point_mapper(df, aggcol, quartiles=False, other_fac=None):
'''
Display a point symbol map of the Dataframe passed in. A point symbol map represents
each facility as a point, with the size of the point scaled to the data value
(e.g. inspections, violations) proportionally or through quartiles.
Parameters
----------
df : Dataframe
The facilities to map. They must have a FAC_LAT and FAC_LONG field.
This Dataframe should
already be aggregated by facility e.g.:
NPDES_ID violations FAC_LAT FAC_LONG
NY12345 13 43.03 -73.92
NY54321 2 42.15 -80.12
...
aggcol : String
The name of the field in the Dataframe that has been aggregated. This is
used for the legend (pop-up window on the map)
quartiles : Boolean
False (default) returns a proportionally-scaled point symbol map, meaning
that the radius of each point is directly scaled to the value (e.g. 13 violations)
True returns a graduated point symbol map, meaning that the radius of each
point is a function of the splitting the Dataframe into quartiles.
other_fac : Dataframe
Other regulated facilities without violations, inspections,
penalties, etc. - whatever the value being mapped is. This is an optional
variable enabling further context to the map. They must have a FAC_LAT and FAC_LONG field.
Returns
-------
folium.Map
'''
if ( df is not None ):
map_of_facilities = folium.Map()
if quartiles == True:
df['quantile'] = pd.qcut(df[aggcol], 4, labels=False, duplicates="drop")
scale = {0: 8,1:12, 2: 16, 3: 24} # First quartile = size 8 circles, etc.
# Add a clickable marker for each facility
for index, row in df.iterrows():
if quartiles == True:
r = scale[row["quantile"]]
else:
r = row[aggcol]
map_of_facilities.add_child(folium.CircleMarker(
location = [row["FAC_LAT"], row["FAC_LONG"]],
popup = aggcol+": "+str(row[aggcol]),
radius = r * 4, # arbitrary scalar
color = "black",
weight = 1,
fill_color = "orange",
fill_opacity= .4
))
if ( other_fac is not None ):
for index, row in other_fac.iterrows():
map_of_facilities.add_child(folium.CircleMarker(
location = [row["FAC_LAT"], row["FAC_LONG"]],
popup = "other facility",
radius = 4,
color = "black",
weight = 1,
fill_color = "black",
fill_opacity= 1
))
return map_of_facilities
else:
print( "There are no facilities to map." )
def write_dataset( df, base, type, state, regions ):
'''
Write out a file of the Dataframe passed in.
Parameters
----------
df : Dataframe
The data to write.
base: str
A base string of the file to write
type: str
The region type of the data
state: str
The state, or None
regions: list
The region identifiers, e.g. CD number, County, State, Zip code
'''
if ( df is not None and len( df ) > 0 ):
if ( not os.path.exists( 'CSVs' )):
os.makedirs( 'CSVs' )
filename = 'CSVs/' + base[:50]
if ( type != 'Zip Code' ):
filename += '-' + state
filename += '-' + type
if ( regions is not None ):
for region in regions:
filename += '-' + str(region)
filename = urllib.parse.quote_plus(filename, safe='/')
filename += '.csv'
df.to_csv( filename )
print( "Wrote " + filename )
else:
print( "There is no data to write." )
def make_filename( base, type, state, region, filetype='csv' ):
'''
Make a filename from the parameters and return it.
The filename will be in the Output directory relative to
the current working directory, and in a sub-directory
built out of the state and CD.
Parameters
----------
base : str
A base string of the file
type : str
The region type
state : str
The state or None
region : str
The region
filetype : str
Optional file suffix.
Returns
-------
str
The filename created.
Examples
--------
>>> filename = make_filename( 'noncomp_CWA_pg6', *df_type )
'''
# If type is 'State', the state name is the region.
dir = 'Output/'
if ( type == 'State' ):
dir += region
filename = base + '_' + region
else:
dir += state
filename = base + '_' + state
if ( region is not None ):
dir += str(region)
filename += '-' + str(region)
x = datetime.datetime.now()
filename += '-' + x.strftime( "%m%d%y") +'.' + filetype
dir += '/'
if ( not os.path.exists( dir )):
os.makedirs( dir )
return dir + filename
def get_top_violators( df_active, flag, noncomp_field, action_field, num_fac=10 ):
'''
Sort the dataframe and return the rows that have the most number of
non-compliant quarters.
Parameters
----------
df_active : Dataframe
Must have ECHO_EXPORTER fields
flag : str
Identifies the EPA programs of the facility (AIR_FLAG, NPDES_FLAG, etc.)
noncomp_field : str
The field with the non-compliance values, 'S' or 'V'.
action_field
The field with the count of quarters with formal actions
num_fac
The number of facilities to include in the returned Dataframe
Returns
-------
Dataframe
The top num_fac violators for the EPA program in the region
Examples
--------
>>> df_violators = get_top_violators( df_active, 'AIR_FLAG',
'CAA_3YR_COMPL_QTRS_HISTORY', 'CAA_FORMAL_ACTION_COUNT', 20 )
'''
df = df_active.loc[ df_active[flag] == 'Y' ]
if ( len( df ) == 0 ):
return None
df_active = df.copy()
noncomp = df_active[ noncomp_field ]
noncomp_count = noncomp.str.count('S') + noncomp.str.count('V')
df_active['noncomp_count'] = noncomp_count
df_active = df_active[['FAC_NAME', 'noncomp_count', action_field,
'DFR_URL', 'FAC_LAT', 'FAC_LONG']]
df_active = df_active[df_active['noncomp_count'] > 0]
df_active = df_active.sort_values( by=['noncomp_count', action_field],
ascending=False )
df_active = df_active.head( num_fac )
return df_active
def chart_top_violators( ranked, state, selections, epa_pgm ):
'''
Draw a horizontal bar chart of the top non-compliant facilities.
Parameters
----------
ranked : Dataframe
The facilities to be charted
state : str
The state
selections : list
The selections
epa_pgm : str
The EPA program associated with this list of non-compliant facilities
Returns
-------
seaborn.barplot
The graph that is generated
'''
if ranked is None:
print( 'There is no {} data to graph.'.format( epa_pgm ))
return None
unit = ranked.index
values = ranked['noncomp_count']
if ( len(values) == 0 ):
return "No {} facilities with non-compliant quarters in {} - {}".format(
epa_pgm, state, str( selections ))
sns.set(style='whitegrid')
fig, ax = plt.subplots(figsize=(10,10))
try:
g = sns.barplot(x=values, y=unit, order=list(unit), orient="h")
g.set_title('{} facilities with the most non-compliant quarters in {} - {}'.format(
epa_pgm, state, str( selections )))
ax.set_xlabel("Non-compliant quarters")
ax.set_ylabel("Facility")
ax.set_yticklabels(ranked["FAC_NAME"])
return ( g )
except TypeError as te:
print( "TypeError: {}".format( str(te) ))
return None