-
-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy pathmodule_dreambooth.py
254 lines (224 loc) · 9.49 KB
/
module_dreambooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import asyncio
import gc
import json
import logging
import os
import shutil
import traceback
from concurrent.futures import ThreadPoolExecutor
from typing import Union, Dict
import torch
from core.handlers.config import ConfigHandler
from core.handlers.models import ModelHandler, ModelManager
from core.handlers.status import StatusHandler
from core.handlers.websocket import SocketHandler
from core.modules.base.module_base import BaseModule
from fastapi import FastAPI
import scripts.api
from dreambooth import shared
from dreambooth.dataclasses.db_config import DreamboothConfig, from_file
from dreambooth.sd_to_diff import extract_checkpoint
from dreambooth.train_dreambooth import main
from module_src.gradio_parser import parse_gr_code
logger = logging.getLogger(__name__)
class DreamboothModule(BaseModule):
def __init__(self):
self.id = "dreambooth"
self.name: str = "Dreambooth"
self.path = os.path.abspath(os.path.dirname(__file__))
self.model_handler = ModelHandler()
super().__init__(self.id, self.name, self.path)
def initialize(self, app: FastAPI, handler: SocketHandler):
self._initialize_api(app)
self._initialize_websocket(handler)
defaults_base_file = os.path.join(os.path.dirname(__file__), "templates", "db_config.json")
if os.path.exists(defaults_base_file):
ch = ConfigHandler()
ch.set_config_protected(json.load(open(defaults_base_file, "r")), "dreambooth_model_defaults")
def _initialize_api(self, app: FastAPI):
return scripts.api.dreambooth_api(None, app)
def _initialize_websocket(self, handler: SocketHandler):
handler.register("train_dreambooth", _train_dreambooth)
handler.register("create_dreambooth", _create_model)
handler.register("get_db_config", _get_model_config)
handler.register("save_db_config", _set_model_config)
handler.register("get_layout", _get_layout)
handler.register("get_db_vars", _get_db_vars)
async def _get_db_vars(request):
from dreambooth.utils.utils import (
list_attention,
list_precisions,
list_optimizer,
list_schedulers,
)
from dreambooth.utils.image_utils import get_scheduler_names
attentions = list_attention()
precisions = list_precisions()
optimizers = list_optimizer()
schedulers = list_schedulers()
infer_schedulers = get_scheduler_names()
return {
"attentions": attentions,
"precisions": precisions,
"optimizers": optimizers,
"schedulers": schedulers,
"infer_schedulers": infer_schedulers
}
async def _train_dreambooth(request):
user = request["user"] if "user" in request else None
config = await _set_model_config(request, True)
mh = ModelHandler(user_name=user)
mm = ModelManager()
sh = StatusHandler(user_name=user, target="dreamProgress")
mm.to_cpu()
shared.db_model_config = config
try:
torch.cuda.empty_cache()
gc.collect()
except:
pass
sh.start(0, "Starting Dreambooth Training...")
await sh.send_async()
result = {"message": "Training complete."}
try:
loop = asyncio.get_event_loop()
with ThreadPoolExecutor() as pool:
await loop.run_in_executor(pool, lambda: (
sh.start(0, "Starting Dreambooth Training..."),
main(user=user)
))
except Exception as e:
logger.error(f"Error in training: {e}")
traceback.print_exc()
result = {"message": f"Error in training: {e}"}
try:
gc.collect()
torch.cuda.empty_cache()
except:
pass
sh.end(result["message"])
return result
async def _create_model(data):
target = data["target"] if "target" in data else None
mh = ModelHandler(user_name=data["user"] if "user" in data else None)
sh = StatusHandler(user_name=data["user"] if "user" in data else None, target=target)
logger.debug(f"Full message: {data}")
data = data["data"] if "data" in data else None
logger.debug(f"Create model called: {data}")
model_name = data["new_model_name"] if "new_model_name" in data else None
src_hash = data["new_model_src"]
src_model = await mh.find_model("diffusers", src_hash)
logger.debug(f"SRC Model result: {src_model}")
src = src_model.path if src_model else None
shared_src = data["new_model_shared_src"] if "new_model_shared_src" in data else None
from_hub = data["create_from_hub"] if "create_from_hub" in data else False
logger.debug(f"SRC - {src} and {from_hub}")
if not src:
logger.debug("Unable to find source model.")
return {"status": "Unable to find source model.."}
sh.start(desc=f"Creating model: {model_name}")
if src and not from_hub:
sh.update("status", "Copying model.")
await sh.send_async()
dest = await copy_model(model_name, src, data["512_model"], mh, sh)
mh.refresh("dreambooth", dest, model_name)
else:
sh.update("status", "Extracting model.")
await sh.send_async()
extract_checkpoint(new_model_name=model_name,
checkpoint_file=src,
extract_ema=False,
train_unfrozen=data["train_unfrozen"],
is_512=data["512_model"]
)
mh.refresh("dreambooth")
sh.end(f"Created model: {model_name}")
return {"status": "Model created."}
async def copy_model(model_name: str, src: str, is_512: bool, mh: ModelHandler, sh: StatusHandler):
models_path = mh.models_path
logger.debug(f"Models paths: {models_path}")
model_dir = models_path[0]
dreambooth_models_path = os.path.join(model_dir, "dreambooth")
dest_dir = os.path.join(model_dir, "dreambooth", model_name, "working")
if os.path.exists(dest_dir):
shutil.rmtree(dest_dir, True)
ch = ConfigHandler(user_name=mh.user_name)
base = ch.get_module_defaults("dreambooth_model_defaults")
user_base = ch.get_config_user("dreambooth_model_defaults")
logger.debug(f"User base: {user_base}")
if base is not None:
if user_base is not None:
base = {**base, **user_base}
else:
ch.set_config_user(base, "dreambooth_model_defaults")
else:
logger.debug("Unable to find base model config: dreambooth_model_defaults")
if not os.path.exists(dest_dir):
logger.debug(f"Copying model from {src} to {dest_dir}")
await copy_directory(src, dest_dir, sh)
cfg = DreamboothConfig(model_name=model_name, src=src, resolution=512 if is_512 else 768, models_path=dreambooth_models_path)
cfg.load_params(base)
cfg.save()
else:
logger.debug(f"Destination directory '{dest_dir}' already exists, skipping copy.")
logger.debug("Model copied.")
return dest_dir
async def copy_directory(src_dir, dest_dir, sh: StatusHandler):
total_size = get_directory_size(src_dir)
sh.start(100, "Copying source weights.")
copied_pct = 0
copied_size = 0
for root, dirs, files in os.walk(src_dir):
for file in files:
src_path = os.path.join(root, file)
# Get the name of the parent of the file
parent = os.path.basename(os.path.dirname(src_path))
sh.update(items={"status_2": f"Copying {parent}{os.sep}{file}"})
await sh.send_async()
dest_path = os.path.join(dest_dir, os.path.relpath(src_path, src_dir))
dest_dirname = os.path.dirname(dest_path)
if not os.path.exists(dest_dirname):
logger.debug("Making directory(md): " + dest_dirname)
os.makedirs(dest_dirname)
shutil.copy2(src_path, dest_path)
copied_size += os.path.getsize(src_path)
current_pct = int(copied_size / total_size * 100)
if current_pct > copied_pct:
sh.update(items={"progress_1_current": current_pct})
await sh.send_async()
copied_pct = current_pct
def get_directory_size(dir_path):
total_size = 0
for root, dirs, files in os.walk(dir_path):
for file in files:
total_size += os.path.getsize(os.path.join(root, file))
return total_size
async def _get_layout(data):
logger.debug(f"Get layout called: {data}")
layout_file = os.path.join(os.path.dirname(__file__), "scripts", "main.py")
logger.debug(f"Trying to parse: {layout_file}")
output = parse_gr_code(layout_file)
logger.debug(f"Output: {output}")
return {"status": "Layout created.", "layout": output}
async def _get_model_config(data, return_json=True):
logger.debug(f"Get model called: {data}")
model = data["data"]["model"]
config = from_file(model["name"], os.path.dirname(model["path"]))
if config.concepts_path and os.path.exists(config.concepts_path):
with open(config.concepts_path, "r") as f:
config.concepts_list = json.load(f)
config.concepts_path = ""
config.use_concepts = False
config.save()
if return_json:
return {"config": config.__dict__}
return config
async def _set_model_config(data: dict, return_config: bool = False) -> Union[Dict, DreamboothConfig]:
logger.debug(f"Set model called: {data}")
model = data["data"]["model"]
training_params = data["data"]
del training_params["model"]
config = from_file(model["name"], os.path.dirname(model["path"]))
config.load_params(training_params)
config.save()
return {"config": config.__dict__} if not return_config else config