-
-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy pathpreload.py
30 lines (27 loc) · 1.55 KB
/
preload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import argparse
import logging
import os
logging.basicConfig(format='[%(asctime)s][%(levelname)s][%(name)s] - %(message)s', level=logging.DEBUG)
logger = logging.getLogger("launch")
# Set up logging
to_skip = ["urllib3", "PIL", "accelerate", "matplotlib", "h5py", "xformers", "tensorflow", "passlib", "asyncio",
"tensorboard", "diffusers", "httpx"]
for skip in to_skip:
logging.getLogger(skip).setLevel(logging.WARNING)
def preload(parser: argparse.ArgumentParser):
# from postinstall import actual_install
if os.name == "posix":
# For now disable Torch2 Dynamo
os.environ["TORCHDYNAMO_DISABLE"] = "1"
parser.add_argument("--dreambooth-models-path", type=str, help="Path to directory to store Dreambooth model file("
"s).", default=None)
parser.add_argument("--lora-models-path", type=str, help="Path to directory to store Lora model file(s).",
default=None)
parser.add_argument("--ckptfix", action='store_true',
help="(Dreambooth) Enable fix for OOM errors when extracting checkpoints.")
parser.add_argument("--force-cpu", action='store_true',
help="(Dreambooth) Train using CPU only.")
parser.add_argument("--profile-db", action='store_true',
help="Set this to enable memory profiling while training. For science only.")
parser.add_argument("--debug-db", action='store_true',
help="Set this to enable memory logging. For science only.")