Skip to content

Commit 8f3e60e

Browse files
committed
differences for PR #495
1 parent 6cae557 commit 8f3e60e

File tree

237 files changed

+117853
-467
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

237 files changed

+117853
-467
lines changed

01-raster-structure.md

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -156,13 +156,13 @@ If you wish to store this information in R, you can do the following:
156156

157157

158158
``` r
159-
HARV_dsmCrop_info <- capture.output(
159+
harv_metadata <- capture.output(
160160
describe("data/NEON-DS-Airborne-Remote-Sensing/HARV/DSM/HARV_dsmCrop.tif")
161161
)
162162
```
163163

164164
Each line of text that was printed to the console is now stored as an element of
165-
the character vector `HARV_dsmCrop_info`. We will be exploring this data throughout this
165+
the character vector `harv_metadata`. We will be exploring this data throughout this
166166
episode. By the end of this episode, you will be able to explain and understand the output above.
167167

168168
## Open a Raster in R
@@ -187,10 +187,10 @@ First we will load our raster file into R and view the data structure.
187187

188188

189189
``` r
190-
DSM_HARV <-
190+
dsm_harv <-
191191
rast("data/NEON-DS-Airborne-Remote-Sensing/HARV/DSM/HARV_dsmCrop.tif")
192192

193-
DSM_HARV
193+
dsm_harv
194194
```
195195

196196
``` output
@@ -211,7 +211,7 @@ columns, descriptive statistics for raster data can be retrieved like
211211

212212

213213
``` r
214-
summary(DSM_HARV)
214+
summary(dsm_harv)
215215
```
216216

217217
``` warning
@@ -235,7 +235,7 @@ the function `values`:
235235

236236

237237
``` r
238-
summary(values(DSM_HARV))
238+
summary(values(dsm_harv))
239239
```
240240

241241
``` output
@@ -255,15 +255,15 @@ The `terra` package has an built-in function for conversion to a plotable datafr
255255

256256

257257
``` r
258-
DSM_HARV_df <- as.data.frame(DSM_HARV, xy = TRUE)
258+
dsm_harv_df <- as.data.frame(dsm_harv, xy = TRUE)
259259
```
260260

261261
Now when we view the structure of our data, we will see a standard
262262
dataframe format.
263263

264264

265265
``` r
266-
str(DSM_HARV_df)
266+
str(dsm_harv_df)
267267
```
268268

269269
``` output
@@ -283,7 +283,7 @@ ggplot2 if needed, you can learn about them at their help page `?coord_map`.
283283

284284
``` r
285285
ggplot() +
286-
geom_raster(data = DSM_HARV_df , aes(x = x, y = y, fill = HARV_dsmCrop)) +
286+
geom_raster(data = dsm_harv_df , aes(x = x, y = y, fill = HARV_dsmCrop)) +
287287
scale_fill_viridis_c() +
288288
coord_quickmap()
289289
```
@@ -318,7 +318,7 @@ See `?plot` for more arguments to customize the plot
318318

319319

320320
``` r
321-
plot(DSM_HARV)
321+
plot(dsm_harv)
322322
```
323323

324324
<img src="fig/01-raster-structure-rendered-unnamed-chunk-7-1.png" style="display: block; margin: auto;" />
@@ -352,7 +352,7 @@ function.
352352

353353

354354
``` r
355-
crs(DSM_HARV, proj = TRUE)
355+
crs(dsm_harv, proj = TRUE)
356356
```
357357

358358
``` output
@@ -386,7 +386,7 @@ and datum (`datum=`).
386386

387387
### UTM Proj4 String
388388

389-
A projection string (like the one of `DSM_HARV`) specifies the UTM projection
389+
A projection string (like the one of `dsm_harv`) specifies the UTM projection
390390
as follows:
391391

392392
`+proj=utm +zone=18 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0`
@@ -416,7 +416,7 @@ can view these values:
416416

417417

418418
``` r
419-
minmax(DSM_HARV)
419+
minmax(dsm_harv)
420420
```
421421

422422
``` output
@@ -426,15 +426,15 @@ max 416.07
426426
```
427427

428428
``` r
429-
min(values(DSM_HARV))
429+
min(values(dsm_harv))
430430
```
431431

432432
``` output
433433
[1] 305.07
434434
```
435435

436436
``` r
437-
max(values(DSM_HARV))
437+
max(values(dsm_harv))
438438
```
439439

440440
``` output
@@ -451,7 +451,7 @@ calculated, we can calculate them using the
451451

452452

453453
``` r
454-
DSM_HARV <- setMinMax(DSM_HARV)
454+
dsm_harv <- setMinMax(dsm_harv)
455455
```
456456

457457
::::::::::::::::::::::::::::::::::::::::::::::::::
@@ -461,7 +461,7 @@ We can see that the elevation at our site ranges from 305.0700073m to
461461

462462
## Raster Bands
463463

464-
The Digital Surface Model object (`DSM_HARV`) that we've been working with is a
464+
The Digital Surface Model object (`dsm_harv`) that we've been working with is a
465465
single band raster. This means that there is only one dataset stored in the
466466
raster: surface elevation in meters for one time period.
467467

@@ -473,7 +473,7 @@ view the number of bands in a raster using the `nlyr()` function.
473473

474474

475475
``` r
476-
nlyr(DSM_HARV)
476+
nlyr(dsm_harv)
477477
```
478478

479479
``` output
@@ -543,15 +543,15 @@ of `NA` will be ignored by R as demonstrated above.
543543
## Challenge
544544

545545
Use the output from the `describe()` and `sources()` functions to find out what
546-
`NoDataValue` is used for our `DSM_HARV` dataset.
546+
`NoDataValue` is used for our `dsm_harv` dataset.
547547

548548
::::::::::::::: solution
549549

550550
## Answers
551551

552552

553553
``` r
554-
describe(sources(DSM_HARV))
554+
describe(sources(dsm_harv))
555555
```
556556

557557
``` output
@@ -665,7 +665,7 @@ useful in identifying outliers and bad data values in our raster data.
665665

666666
``` r
667667
ggplot() +
668-
geom_histogram(data = DSM_HARV_df, aes(HARV_dsmCrop))
668+
geom_histogram(data = dsm_harv_df, aes(HARV_dsmCrop))
669669
```
670670

671671
``` output
@@ -685,7 +685,7 @@ by using the `bins` value in the `geom_histogram()` function.
685685

686686
``` r
687687
ggplot() +
688-
geom_histogram(data = DSM_HARV_df, aes(HARV_dsmCrop), bins = 40)
688+
geom_histogram(data = dsm_harv_df, aes(HARV_dsmCrop), bins = 40)
689689
```
690690

691691
<img src="fig/01-raster-structure-rendered-view-raster-histogram2-1.png" style="display: block; margin: auto;" />
@@ -701,7 +701,7 @@ no bad data values in this particular raster.
701701

702702
Use `describe()` to determine the following about the `NEON-DS-Airborne-Remote-Sensing/HARV/DSM/HARV_DSMhill.tif` file:
703703

704-
1. Does this file have the same CRS as `DSM_HARV`?
704+
1. Does this file have the same CRS as `dsm_harv`?
705705
2. What is the `NoDataValue`?
706706
3. What is resolution of the raster data?
707707
4. How large would a 5x5 pixel area be on the Earth's surface?
@@ -787,7 +787,7 @@ describe("data/NEON-DS-Airborne-Remote-Sensing/HARV/DSM/HARV_DSMhill.tif")
787787
```
788788

789789

790-
1. If this file has the same CRS as DSM_HARV? Yes: UTM Zone 18, WGS84, meters.
790+
1. If this file has the same CRS as dsm_harv? Yes: UTM Zone 18, WGS84, meters.
791791
2. What format `NoDataValues` take? -9999
792792
3. The resolution of the raster data? 1x1
793793
4. How large a 5x5 pixel area would be? 5mx5m How? We are given resolution of 1x1 and units in meters, therefore resolution of 5x5 means 5x5m.

0 commit comments

Comments
 (0)