-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLoadingData.R
61 lines (35 loc) · 1.7 KB
/
LoadingData.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
####imports von libraries##############################################
library(readr)
library(rstudioapi)
#######################################################################
#### find local directory #####
wd = dirname(rstudioapi::getSourceEditorContext()$path)
#########################
##################Einlesen der ganzen Daten#######################
Untreated <- readRDS(paste0(wd,"/data/NCI_TPW_gep_untreated.rds"))
Treated <- readRDS(paste0(wd,"/data/NCI_TPW_gep_treated.rds"))
Metadata = read.table(paste0(wd,"/data/NCI_TPW_metadata.tsv"), header = TRUE, sep ="\t", stringsAsFactors = TRUE)
Sensitivity <- readRDS(paste0(wd,"/data/NegLogGI50.rds"))
Basal <- readRDS(paste0(wd,"/data/CCLE_basalexpression.rds"))
Copynumber <- readRDS(paste0(wd,"/data/CCLE_copynumber.rds"))
Mutations <- readRDS(paste0(wd,"/data/CCLE_mutations.rds"))
Cellline_annotation = read.table(paste0(wd,"/data/cellline_annotation.tsv"), header = TRUE, sep ="\t", stringsAsFactors = TRUE)
Drug_annotation = read.table(paste0(wd,"/data/drug_annotation.tsv"), header = TRUE, sep ="\t", stringsAsFactors = TRUE)
#######################################################################
#daten umwandeln
Treated <- as.data.frame(Treated)
# um Datentyp zu testen: is.recursive(mat_NCI_TPW_gep_treated)
Untreated <- as.data.frame(Untreated)
Sensitivity<- as.data.frame(Sensitivity)
########################################################################
# if you want to work with normalized data
Untreated_norm <- apply(Untreated, 2, function(x){
(x - mean(x)) / sd(x)
})
Treated_norm <- apply(Treated, 2, function(x){
(x - mean(x)) / sd(x)
})
FC <- Treated - Untreated
FC_norm <- apply(FC, 2, function(x){
(x - mean(x)) / sd(x)
})