|
39 | 39 | },
|
40 | 40 | {
|
41 | 41 | "cell_type": "code",
|
42 |
| - "execution_count": 2, |
| 42 | + "execution_count": 1, |
43 | 43 | "metadata": {
|
44 | 44 | "id": "yVCWxFA_a1Cc"
|
45 | 45 | },
|
|
48 | 48 | "name": "stderr",
|
49 | 49 | "output_type": "stream",
|
50 | 50 | "text": [
|
51 |
| - "c:\\Users\\damir\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\utils\\generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", |
52 |
| - " _torch_pytree._register_pytree_node(\n", |
53 |
| - "c:\\Users\\damir\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\utils\\generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", |
54 |
| - " _torch_pytree._register_pytree_node(\n" |
| 51 | + "2024-10-23 17:10:52.468340: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", |
| 52 | + "2024-10-23 17:10:52.477833: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", |
| 53 | + "2024-10-23 17:10:52.489025: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", |
| 54 | + "2024-10-23 17:10:52.492373: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", |
| 55 | + "2024-10-23 17:10:52.501195: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", |
| 56 | + "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
| 57 | + "2024-10-23 17:10:53.195914: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" |
55 | 58 | ]
|
56 | 59 | }
|
57 | 60 | ],
|
|
84 | 87 | },
|
85 | 88 | {
|
86 | 89 | "cell_type": "code",
|
87 |
| - "execution_count": 3, |
| 90 | + "execution_count": 2, |
88 | 91 | "metadata": {
|
89 | 92 | "colab": {
|
90 | 93 | "base_uri": "https://localhost:8080/",
|
|
162 | 165 | "outputId": "f3e446e7-4b14-4188-8535-7ae8be01324c"
|
163 | 166 | },
|
164 | 167 | "outputs": [
|
| 168 | + { |
| 169 | + "data": { |
| 170 | + "application/vnd.jupyter.widget-view+json": { |
| 171 | + "model_id": "d7d58c4562e24b30b170d3391c018e1e", |
| 172 | + "version_major": 2, |
| 173 | + "version_minor": 0 |
| 174 | + }, |
| 175 | + "text/plain": [ |
| 176 | + "model.safetensors: 0%| | 0.00/1.63G [00:00<?, ?B/s]" |
| 177 | + ] |
| 178 | + }, |
| 179 | + "metadata": {}, |
| 180 | + "output_type": "display_data" |
| 181 | + }, |
| 182 | + { |
| 183 | + "data": { |
| 184 | + "application/vnd.jupyter.widget-view+json": { |
| 185 | + "model_id": "e7eb51f52fa34f9ea364e5629dcfed90", |
| 186 | + "version_major": 2, |
| 187 | + "version_minor": 0 |
| 188 | + }, |
| 189 | + "text/plain": [ |
| 190 | + "tokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]" |
| 191 | + ] |
| 192 | + }, |
| 193 | + "metadata": {}, |
| 194 | + "output_type": "display_data" |
| 195 | + }, |
| 196 | + { |
| 197 | + "data": { |
| 198 | + "application/vnd.jupyter.widget-view+json": { |
| 199 | + "model_id": "aec4fd4bd9d34cd89d25f9a37d684e0b", |
| 200 | + "version_major": 2, |
| 201 | + "version_minor": 0 |
| 202 | + }, |
| 203 | + "text/plain": [ |
| 204 | + "vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]" |
| 205 | + ] |
| 206 | + }, |
| 207 | + "metadata": {}, |
| 208 | + "output_type": "display_data" |
| 209 | + }, |
| 210 | + { |
| 211 | + "data": { |
| 212 | + "application/vnd.jupyter.widget-view+json": { |
| 213 | + "model_id": "58b91f0e42d641e4ade231d6601ba465", |
| 214 | + "version_major": 2, |
| 215 | + "version_minor": 0 |
| 216 | + }, |
| 217 | + "text/plain": [ |
| 218 | + "merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]" |
| 219 | + ] |
| 220 | + }, |
| 221 | + "metadata": {}, |
| 222 | + "output_type": "display_data" |
| 223 | + }, |
| 224 | + { |
| 225 | + "data": { |
| 226 | + "application/vnd.jupyter.widget-view+json": { |
| 227 | + "model_id": "4cd8f0c608ea4d569617f24dcaad9242", |
| 228 | + "version_major": 2, |
| 229 | + "version_minor": 0 |
| 230 | + }, |
| 231 | + "text/plain": [ |
| 232 | + "tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]" |
| 233 | + ] |
| 234 | + }, |
| 235 | + "metadata": {}, |
| 236 | + "output_type": "display_data" |
| 237 | + }, |
165 | 238 | {
|
166 | 239 | "name": "stderr",
|
167 | 240 | "output_type": "stream",
|
168 | 241 | "text": [
|
169 |
| - "c:\\Users\\damir\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\huggingface_hub\\file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n", |
170 |
| - " warnings.warn(\n" |
| 242 | + "/home/damir/.local/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n", |
| 243 | + " warnings.warn(\n", |
| 244 | + "Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n" |
171 | 245 | ]
|
172 | 246 | }
|
173 | 247 | ],
|
|
184 | 258 | },
|
185 | 259 | {
|
186 | 260 | "cell_type": "code",
|
187 |
| - "execution_count": 10, |
| 261 | + "execution_count": 3, |
188 | 262 | "metadata": {},
|
189 | 263 | "outputs": [],
|
190 | 264 | "source": [
|
|
201 | 275 | },
|
202 | 276 | {
|
203 | 277 | "cell_type": "code",
|
204 |
| - "execution_count": 11, |
| 278 | + "execution_count": 4, |
205 | 279 | "metadata": {
|
206 | 280 | "colab": {
|
207 | 281 | "base_uri": "https://localhost:8080/"
|
|
215 | 289 | "text/plain": [
|
216 | 290 | "{'sequence': 'We like to use Code for Python, but vim for C.',\n",
|
217 | 291 | " 'labels': ['programming', 'economy', 'automotive', 'politics'],\n",
|
218 |
| - " 'scores': [0.894223690032959,\n", |
219 |
| - " 0.07695318013429642,\n", |
220 |
| - " 0.021453876048326492,\n", |
221 |
| - " 0.00736920116469264]}" |
| 292 | + " 'scores': [0.8942243456840515,\n", |
| 293 | + " 0.07695267349481583,\n", |
| 294 | + " 0.021453848108649254,\n", |
| 295 | + " 0.0073691364377737045]}" |
222 | 296 | ]
|
223 | 297 | },
|
224 |
| - "execution_count": 11, |
| 298 | + "execution_count": 4, |
225 | 299 | "metadata": {},
|
226 | 300 | "output_type": "execute_result"
|
227 | 301 | }
|
|
379 | 453 | "name": "python",
|
380 | 454 | "nbconvert_exporter": "python",
|
381 | 455 | "pygments_lexer": "ipython3",
|
382 |
| - "version": "3.12.3" |
| 456 | + "version": "3.12.7" |
383 | 457 | },
|
384 | 458 | "widgets": {
|
385 | 459 | "application/vnd.jupyter.widget-state+json": {
|
|
0 commit comments