|
8 | 8 | "source": [
|
9 | 9 | "import numpy as np\n",
|
10 | 10 | "import torch\n",
|
11 |
| - "torch.set_printoptions(edgeitems=2, threshold=50)" |
| 11 | + "torch.set_printoptions(edgeitems=2, threshold=50, linewidth=75)" |
12 | 12 | ]
|
13 | 13 | },
|
14 | 14 | {
|
|
32 | 32 | }
|
33 | 33 | ],
|
34 | 34 | "source": [
|
35 |
| - "bikes_numpy = np.loadtxt(\"../data/p1ch4/bike-sharing-dataset/hour-fixed.csv\", \n", |
36 |
| - " dtype=np.float32, \n", |
37 |
| - " delimiter=\",\", \n", |
38 |
| - " skiprows=1, \n", |
39 |
| - " converters={1: lambda x: float(x[8:10])}) # <1>\n", |
| 35 | + "bikes_numpy = np.loadtxt(\n", |
| 36 | + " \"../data/p1ch4/bike-sharing-dataset/hour-fixed.csv\", \n", |
| 37 | + " dtype=np.float32, \n", |
| 38 | + " delimiter=\",\", \n", |
| 39 | + " skiprows=1, \n", |
| 40 | + " converters={1: lambda x: float(x[8:10])}) # <1>\n", |
40 | 41 | "bikes = torch.from_numpy(bikes_numpy)\n",
|
41 | 42 | "bikes"
|
42 | 43 | ]
|
|
113 | 114 | {
|
114 | 115 | "data": {
|
115 | 116 | "text/plain": [
|
116 |
| - "tensor([1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2])" |
| 117 | + "tensor([1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2,\n", |
| 118 | + " 2, 2])" |
117 | 119 | ]
|
118 | 120 | },
|
119 | 121 | "execution_count": 6,
|
|
162 | 164 | {
|
163 | 165 | "data": {
|
164 | 166 | "text/plain": [
|
165 |
| - "tensor([[ 1.0000, 1.0000, 1.0000, 0.0000, 1.0000, 0.0000, 0.0000, 6.0000,\n", |
166 |
| - " 0.0000, 1.0000, 0.2400, 0.2879, 0.8100, 0.0000, 3.0000, 13.0000,\n", |
167 |
| - " 16.0000, 1.0000, 0.0000, 0.0000, 0.0000]])" |
| 167 | + "tensor([[ 1.0000, 1.0000, 1.0000, 0.0000, 1.0000, 0.0000, 0.0000,\n", |
| 168 | + " 6.0000, 0.0000, 1.0000, 0.2400, 0.2879, 0.8100, 0.0000,\n", |
| 169 | + " 3.0000, 13.0000, 16.0000, 1.0000, 0.0000, 0.0000, 0.0000]])" |
168 | 170 | ]
|
169 | 171 | },
|
170 | 172 | "execution_count": 8,
|
|
193 | 195 | }
|
194 | 196 | ],
|
195 | 197 | "source": [
|
196 |
| - "daily_weather_onehot = torch.zeros(daily_bikes.shape[0], 4, daily_bikes.shape[2])\n", |
| 198 | + "daily_weather_onehot = torch.zeros(daily_bikes.shape[0], 4,\n", |
| 199 | + " daily_bikes.shape[2])\n", |
197 | 200 | "daily_weather_onehot.shape"
|
198 | 201 | ]
|
199 | 202 | },
|
|
214 | 217 | }
|
215 | 218 | ],
|
216 | 219 | "source": [
|
217 |
| - "daily_weather_onehot.scatter_(1, daily_bikes[:,9,:].long().unsqueeze(1) - 1, 1.0)\n", |
| 220 | + "daily_weather_onehot.scatter_(\n", |
| 221 | + " 1, daily_bikes[:,9,:].long().unsqueeze(1) - 1, 1.0)\n", |
218 | 222 | "daily_weather_onehot.shape"
|
219 | 223 | ]
|
220 | 224 | },
|
|
245 | 249 | "temp = daily_bikes[:, 10, :]\n",
|
246 | 250 | "temp_min = torch.min(temp)\n",
|
247 | 251 | "temp_max = torch.max(temp)\n",
|
248 |
| - "daily_bikes[:, 10, :] = (daily_bikes[:, 10, :] - temp_min) / (temp_max - temp_min)" |
| 252 | + "daily_bikes[:, 10, :] = ((daily_bikes[:, 10, :] - temp_min)\n", |
| 253 | + " / (temp_max - temp_min))" |
249 | 254 | ]
|
250 | 255 | },
|
251 | 256 | {
|
|
255 | 260 | "outputs": [],
|
256 | 261 | "source": [
|
257 | 262 | "temp = daily_bikes[:, 10, :]\n",
|
258 |
| - "daily_bikes[:, 10, :] = (daily_bikes[:, 10, :] - torch.mean(temp)) / torch.std(temp)" |
| 263 | + "daily_bikes[:, 10, :] = ((daily_bikes[:, 10, :] - torch.mean(temp))\n", |
| 264 | + " / torch.std(temp))" |
259 | 265 | ]
|
260 | 266 | }
|
261 | 267 | ],
|
|
275 | 281 | "name": "python",
|
276 | 282 | "nbconvert_exporter": "python",
|
277 | 283 | "pygments_lexer": "ipython3",
|
278 |
| - "version": "3.6.6" |
| 284 | + "version": "3.7.6" |
279 | 285 | }
|
280 | 286 | },
|
281 | 287 | "nbformat": 4,
|
|
0 commit comments