-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcbbo-array.toml
103 lines (84 loc) · 2.41 KB
/
cbbo-array.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# This configuration uses an array for the benchmarks
title = "CBBO Benchmark"
benchmark = [
"Ackley",
"Branin",
"Hartmann6D",
"Levy",
"Michal",
"Rosen",
"Schwefel",
"Shekel",
]
[evaluator]
method = "thread"
num_workers = 1
[search]
max_evals = 10
num_replications = 2
[search.method.random]
package = "deephyper.hpo"
name = "RandomSearch"
[search.method.cbo_093]
package = "deephyper.hpo"
name = "CBO"
kwargs.acq_optimizer = "ga"
[search.method.cbo]
package = "deephyper.hpo"
name = "CBO"
kwargs.acq_optimizer = "ga"
# [search.method.cbo_no_outlier]
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_optimizer = "ga"
# [search.method.cbo_mixedga]
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_optimizer = "mixedga"
# [search.method.cbo_ga_init_random]
# # test with random initialization for ga
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_optimizer = "ga"
# [search.method.cbo_lhs]
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_optimizer = "ga"
# kwargs.initial_point_generator = "lhs"
# [search.method.cbo_n_estimators]
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_optimizer = "ga"
# kwargs.surrogate_model_kwargs = { n_estimators = 50, min_samples_split = 2, min_impurity_decrease = 0.005, scheduler = { patience = 10, params = { min_impurity_decrease = { factor = 0.2 } } } }
# [search.method.cbo_n_initial_points]
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_optimizer = "ga"
# kwargs.n_initial_points = 21
# [search.method.cbo_kappa_5]
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_func_kwargs = { kappa = 5.0 }
# kwargs.acq_optimizer = "ga"
# [search.method.cbo_kappa_period_25]
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_func_kwargs = { kappa = 1.96, scheduler = { type = "periodic-exp-decay", patience = 25, kappa_final = 0.01 } }
# kwargs.acq_optimizer = "ga"
# [search.method.cbo_min_samples_split]
# package = "deephyper.hpo"
# name = "CBO"
# kwargs.acq_optimizer = "ga"
# kwargs.surrogate_model_kwargs = { n_estimators = 10, min_samples_split = 8, min_impurity_decrease = 0.0 }
[search.method.tpe]
package = "cbbo_benchmarks.optuna"
name = "OptunaSearch"
kwargs.sampler = "TPE"
# [search.method.cmaes]
# package = "deephyper_benchmark.hpo.optuna"
# name = "OptunaSearch"
# kwargs.sampler = "CMAES"
# [search.method.smac]
# package = "deephyper_benchmark.hpo.optuna"
# name = "OptunaSearch"
# kwargs.sampler = "SMAC"