-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_movielens.py
383 lines (318 loc) · 14.3 KB
/
run_movielens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Code for the movielens experiments.
"""
import argparse
import os
import time
import random
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Lambda, Concatenate, Reshape, Embedding, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.regularizers import l2
from movielens.dataset import MovieLensDataset1M
from models.interpretable_utils_list import *
from models.interpretable_utils_matrix import *
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", help="dataset link", type=str, default="data/ml-1m")
parser.add_argument("--debug", help="reduced dataset mode", action='store_true')
parser.add_argument("--train", help="train or test", dest="train", action='store_true', default=True)
parser.add_argument("--test", help="train or test", dest="train", action='store_false')
parser.add_argument("--save_weights", help="whether to save the weights during training", action='store_true')
parser.add_argument("--save_dir", help="save directory path", type=str, default='')
parser.add_argument("--bs", help="training batch_size", type=int, default=256)
parser.add_argument("--run_baseline", help="whether to run the non-interpretable counter-part", action='store_true', default=False)
parser.add_argument("--model_name", help="model name for saving after training or loading for testing", default='movielens_' + str(int(time.time())))
parser.add_argument("--F", help="model hidden layer and embedding size, corresponding to the NeuCF architecture", type=int, default=64)
parser.add_argument("--div_F", help="hidden layer divider, relative to the embedding size", type=int, default=1)
parser.add_argument("--mult_F", help="hidden layer multiplier, relative to the embedding size", type=int, default=1)
parser.add_argument("--cb_F", help="content-based embedding size multiplier", type=int, default=2)
parser.add_argument("--baseline_mult_F", help="baseline model hidden layer multiplier, relative to the embedding size", type=int, default=4)
args = parser.parse_args()
dataset = MovieLensDataset1M(args.dataset, debug=args.debug)
dataset.split_implicit_data()
BATCH_SIZE = args.bs
MODE = 7 # all features, cf get_aug_implicit_data documentation
RUN_BASELINE = args.run_baseline
MODEL_OUT_NAME = args.model_name
SAVE = args.save_weights
DIR = args.save_dir
TRAIN = args.train
## model definition (based on the dataset object)
class Aug_NCF_MLP:
''' NeuCF MLP but with additional data '''
def __init__(self, mode, F = 64, DF = 1, G = 2):
self.build(mode, F, DF, G)
self.name = "aug_MLP_" + str(mode)
def build(self, mode, F, DF, G):
model_inputs = []
first_layer = []
if mode & 1 > 0:
# -- Xu
Xu = Input(1, dtype='int32', name='Xu')
model_inputs.append(Xu)
emb_u_layer = Embedding(dataset.Nu, F, # dataset.Nu, max(users) + 1
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_user")
emb_u = emb_u_layer(Xu)
emb_u = Flatten()(emb_u)
first_layer.append(emb_u)
if mode & 2 > 0:
# -- Xi
Xi = Input(1, dtype='int32', name='Xi')
model_inputs.append(Xi)
emb_i_layer = Embedding(dataset.Ni, F, # dataset.Ni, max(items) + 1
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_item")
emb_i = emb_i_layer(Xi)
emb_i = Flatten()(emb_i)
first_layer.append(emb_i)
if mode & 4 > 0:
# user embeddings - 8, ~log_2(size dict)
Xs, Xa, Xc = Input(1, dtype='int32', name='Xs'), Input(1, dtype='int32', name='Xa'), Input(1, dtype='int32', name='Xc')
emb_sex = Embedding(2, 1 * G, # dataset.Ni
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_sex")
emb_age = Embedding(dataset.Na, 3 * G, # dataset.Ni
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_age")
emb_cat = Embedding(dataset.Nc, 4 * G, # dataset.Ni
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_cat")
emb_s = emb_sex(Xs)
emb_a = emb_age(Xa)
emb_c = emb_cat(Xc)
emb_s = Flatten()(emb_s)
emb_a = Flatten()(emb_a)
emb_c = Flatten()(emb_c)
Xm = Input(dataset.Ng + 1, name='Xm', dtype='float32')
emb_m = Dense(8 * G, activation='tanh')(Xm)
model_inputs += [Xs, Xa, Xc, Xm]
first_layer += [emb_s, emb_a, emb_c, emb_m]
z = Concatenate(axis=-1)(first_layer)
z = Dense(F * 2 * DF, activation='relu')(z)
z = Dense(F * DF, activation='relu')(z)
z = Dense(F * DF // 2, activation='relu')(z)
z = Dense(F * DF // 4, activation='relu')(z)
z = Dense(1, activation='sigmoid', kernel_initializer='lecun_uniform')(z)
m = Model(inputs=model_inputs, outputs=z) #Xu, Xi,
m.compile(
loss = 'binary_crossentropy',
optimizer=Adam(1e-3),
metrics=['acc'],
)
self.model = m
self.model_out = m
class Int_NCF_MLP:
''' OURS: Interpretable augmented MLP model'''
def __init__(self, params):
self.name = "interp_MLP"
self.build(params)
@staticmethod
def dense_block(x, params):
y = Dense(params['F'],
activation='relu',
name='{}_dense_{}'.format(params['name'], params['i'])
)(x)
return y
@staticmethod
def out_block(x, params):
y = Dense(1, activation='sigmoid')(x)
return y
def build(self, params):
model_inputs = []
first_layer = []
S = params['S']
TR = params['TR']
CM = params['CM']
F = params['F']
dF = params['dF']
DF = params['DF']
G = params['cb_factor']
self.name += '_' + str(F)
# ------ INPUT
# -- Xu <0>
Xu = Input(1, dtype='int32', name='Xu')
model_inputs.append(Xu)
emb_u_layer = Embedding(params['Nu'], F, # dataset.Nu, max(users) + 1
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_user")
emb_u = Flatten()(emb_u_layer(Xu))
first_layer.append(emb_u)
# -- Xi <1>
Xi = Input(1, dtype='int32', name='Xi')
model_inputs.append(Xi)
emb_i_layer = Embedding(params['Ni'], F, # dataset.Ni, max(items) + 1
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_item")
emb_i = Flatten()(emb_i_layer(Xi))
first_layer.append(emb_i)
# -- Content-based <2>
Xs, Xa, Xc = Input(1, dtype='int32', name='Xs'), Input(1, dtype='int32', name='Xa'), Input(1, dtype='int32', name='Xc')
emb_sex = Embedding(2, 1 * G, # dataset.Ni
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_sex")
emb_age = Embedding(params['Na'], 3 * G, # dataset.Ni
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_age")
emb_cat = Embedding(params['Nc'], 4 * G, # dataset.Ni
embeddings_initializer = 'random_normal',
input_length=1,
name="embed_cat")
emb_s = Flatten()(emb_sex(Xs))
emb_a = Flatten()(emb_age(Xa))
emb_c = Flatten()(emb_cat(Xc))
Xm = Input(params['Ng'] + 1, name='Xm', dtype='float32')
emb_m = Dense(8 * G, activation='tanh')(Xm)
agg_content_based = Concatenate(axis=-1, name='content_based')([emb_s, emb_a, emb_c, emb_m]) # size 16
model_inputs += [Xs, Xa, Xc, Xm]
first_layer.append(agg_content_based)
# -- MODEL
z0 = gather_input(first_layer, S)
z1 = apply_layer(z0, self.dense_block, { 'F': (F * 2) // dF * DF, 'name': 'fc1' })
z1_group = gather_int(z1, TR)
z2 = apply_layer(z1_group, self.dense_block, { 'F': F // dF * DF, 'name': 'fc2' })
z2_group = gather_int(z2, TR)
z3 = apply_layer(z2_group, self.dense_block, { 'F': (F // 2) // dF * DF, 'name': 'fc3' })
z3_group = gather_int(z3, TR)
z4 = apply_layer(z3_group, self.dense_block, { 'F': (F // 4) // dF * DF, 'name': 'fc4' })
z4_group = gather_int(z4, TR)
v_int = apply_layer(z4_group, self.out_block, {}) # sigmoid
v_concat = Concatenate(axis=-1)(v_int)
v_out = Lambda(lambda x: MoE_movielens(x, CM))(v_concat)
self.model_out = Model(inputs=model_inputs, outputs=v_out)
self.model = Model(inputs=model_inputs, outputs=v_concat)
self.model.compile(
loss = self.model_loss(CM),
optimizer=Adam(1e-3),
metrics=['acc'],
)
def model_loss(self, mask_mat):
@tf.function
def loss(y, p_concat):
eps = 1e-6
mask = get_attributions_movielens(p_concat, mask_mat, multiply_self=False)
n_mask = tf.reduce_sum(mask, axis=(0,1)) + 1e-9
masked_bce = (-tf.reduce_sum(
(y * tf.math.log(eps + p_concat) +
(1 - y) * tf.math.log(eps + 1 - p_concat)) * mask,
axis=0) / n_mask) # mean along batch
return tf.reduce_sum(masked_bce)
return loss
## Instantiate baseline and interpretable counter-part
if RUN_BASELINE:
m_baseline = Aug_NCF_MLP(MODE, F = args.F, DF = args.baseline_mult_F)
S = [[0, 0, 1], # content-based
[1, 0, 1], # content + user embeddings
[0, 1, 1], # content + item embeddings
[1, 1, 1], # all features
]
S = [[bool(x) for x in l] for l in S]
TR = generate_tr(S) # Here, TR_ij = S_i \subset S_j !
child_mat = tf.convert_to_tensor(TR, 'float32') - tf.eye(len(TR))
params = {
'Nu': dataset.Nu,
'Ni': dataset.Ni,
'Na': dataset.Na,
'Nc': dataset.Nc,
'Ng': dataset.Ng,
'TR': TR, # connection matrix (transition)
'CM': child_mat, # strictly included connection matrix
'S': S, # \mathcal{S}
'F': args.F, # embedding size
'dF': args.div_F, # hidden layer divider
'DF': args.mult_F, # hidden layer multiplier
'cb_factor': args.cb_F, # aug data multiplier
}
m = Int_NCF_MLP(params)
## Eval utils
def scores(P, K = 10):
pos_items = float(P[-1])
neg_items = sorted(P[:-1].reshape(-1).tolist())
rank = 1
while (neg_items[-rank] > pos_items) and rank <= K + 1:
rank += 1
if rank <= K:
return 1, 1. / np.log2(rank+1), rank
return 0, 0, rank
def evaluate_model(model, dataset, eval_set='test_set', limit=-1):
res = []
item_set = set(dataset.movies.keys())
u = 0
for user in dataset.ratings:
u += 1
if limit > 0 and u > limit: break
pos_i = random.sample(dataset.ratings[user][eval_set], 1)
neg_item_set = item_set - (dataset.ratings[user]['train_set'].union(dataset.ratings[user]['val_set']).union(dataset.ratings[user]['test_set']))
neg_is = random.sample(neg_item_set, 99)
neg_is += pos_i
X = []
if MODE & 1 > 0:
X.append(np.tile(np.reshape(user, (1, 1)), (len(neg_is), 1))) # Xu
if MODE & 2 > 0:
X.append(np.array(neg_is).reshape((-1, 1))) # Xi
if MODE & 4 > 0:
X.append(np.tile(np.reshape(dataset.ratings[user]['sex'], (1, 1)), (len(neg_is), 1)))
X.append(np.tile(np.reshape(dataset.ratings[user]['age'], (1, 1)), (len(neg_is), 1)))
X.append(np.tile(np.reshape(dataset.ratings[user]['cat'], (1, 1)), (len(neg_is), 1)))
Xm = []
for it in neg_is:
Xm.append([dataset.movies[it]['year']]
+ dataset.movies[it]['genres'])
X.append(np.array(Xm, dtype='float32').reshape((-1, dataset.Ng + 1)))
P = model.predict(X)
res.append(scores(P))
return np.mean(res, axis=0)
## Train
best_hr, best_ndcg, best_iter = -1, -1, -1
best_hr_baseline, best_ndcg_baseline, best_iter_baseline = -1, -1, -1
test_scores = 0
test_scores_baseline = 0
if TRAIN:
for e in range(20):
print("Epoch", e)
X, Y = dataset.get_aug_implicit_data(D = 4, mode = MODE)
if RUN_BASELINE:
m_baseline.model.fit(X, Y,
epochs=1,
batch_size=BATCH_SIZE,
verbose=2,
shuffle=True,
)
m.model.fit(X, Y,
epochs=1,
batch_size=BATCH_SIZE,
verbose=2,
shuffle=True,
)
if RUN_BASELINE:
hr, ndcg, rank = evaluate_model(m_baseline.model, dataset, eval_set='val_set')
print('Val hr baseline', hr)
if hr > best_hr_baseline:
best_hr_baseline, best_ndcg_baseline, best_iter_baseline = hr, ndcg, e
test_scores_baseline = evaluate_model(m_baseline.model, dataset, eval_set='test_set')
hr, ndcg, rank = evaluate_model(m.model_out, dataset, eval_set='val_set')
print('Val hr', hr)
if hr > best_hr:
best_hr, best_ndcg, best_iter = hr, ndcg, e
test_scores = evaluate_model(m.model_out, dataset, eval_set='test_set')
if SAVE:
m.model.save_weights(os.path.join(DIR, MODEL_OUT_NAME), overwrite=True)
else:
m.model.load_weights(os.path.join(DIR, MODEL_OUT_NAME))
## Test
if RUN_BASELINE:
last_test_scores = evaluate_model(m_baseline.model, dataset, eval_set='test_set')
print('Baseline test scores', test_scores_baseline, 'overfit:', last_test_scores)
last_test_scores = evaluate_model(m.model_out, dataset, eval_set='test_set')
print('Model test scores', test_scores, 'overfit:', last_test_scores)