forked from unclecode/crawl4ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextraction_strategy.py
1052 lines (851 loc) · 42.6 KB
/
extraction_strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from abc import ABC, abstractmethod
from typing import Any, List, Dict, Optional, Union
from concurrent.futures import ThreadPoolExecutor, as_completed
import json, time
# from optimum.intel import IPEXModel
from .prompts import *
from .config import *
from .utils import *
from .models import *
from functools import partial
from .model_loader import *
import math
import numpy as np
import re
from bs4 import BeautifulSoup
from lxml import html, etree
from dataclasses import dataclass
class ExtractionStrategy(ABC):
"""
Abstract base class for all extraction strategies.
"""
def __init__(self, input_format: str = "markdown", **kwargs):
"""
Initialize the extraction strategy.
Args:
input_format: Content format to use for extraction.
Options: "markdown" (default), "html", "fit_markdown"
**kwargs: Additional keyword arguments
"""
self.input_format = input_format
self.DEL = "<|DEL|>"
self.name = self.__class__.__name__
self.verbose = kwargs.get("verbose", False)
@abstractmethod
def extract(self, url: str, html: str, *q, **kwargs) -> List[Dict[str, Any]]:
"""
Extract meaningful blocks or chunks from the given HTML.
:param url: The URL of the webpage.
:param html: The HTML content of the webpage.
:return: A list of extracted blocks or chunks.
"""
pass
def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
"""
Process sections of text in parallel by default.
:param url: The URL of the webpage.
:param sections: List of sections (strings) to process.
:return: A list of processed JSON blocks.
"""
extracted_content = []
with ThreadPoolExecutor() as executor:
futures = [executor.submit(self.extract, url, section, **kwargs) for section in sections]
for future in as_completed(futures):
extracted_content.extend(future.result())
return extracted_content
class NoExtractionStrategy(ExtractionStrategy):
"""
A strategy that does not extract any meaningful content from the HTML. It simply returns the entire HTML as a single block.
"""
def extract(self, url: str, html: str, *q, **kwargs) -> List[Dict[str, Any]]:
"""
Extract meaningful blocks or chunks from the given HTML.
"""
return [{"index": 0, "content": html}]
def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
return [{"index": i, "tags": [], "content": section} for i, section in enumerate(sections)]
#######################################################
# Strategies using LLM-based extraction for text data #
#######################################################
class LLMExtractionStrategy(ExtractionStrategy):
"""
A strategy that uses an LLM to extract meaningful content from the HTML.
Attributes:
provider: The provider to use for extraction. It follows the format <provider_name>/<model_name>, e.g., "ollama/llama3.3".
api_token: The API token for the provider.
instruction: The instruction to use for the LLM model.
schema: Pydantic model schema for structured data.
extraction_type: "block" or "schema".
chunk_token_threshold: Maximum tokens per chunk.
overlap_rate: Overlap between chunks.
word_token_rate: Word to token conversion rate.
apply_chunking: Whether to apply chunking.
base_url: The base URL for the API request.
api_base: The base URL for the API request.
extra_args: Additional arguments for the API request, such as temprature, max_tokens, etc.
verbose: Whether to print verbose output.
usages: List of individual token usages.
total_usage: Accumulated token usage.
"""
def __init__(self,
provider: str = DEFAULT_PROVIDER, api_token: Optional[str] = None,
instruction:str = None, schema:Dict = None, extraction_type = "block", **kwargs):
"""
Initialize the strategy with clustering parameters.
Args:
provider: The provider to use for extraction. It follows the format <provider_name>/<model_name>, e.g., "ollama/llama3.3".
api_token: The API token for the provider.
instruction: The instruction to use for the LLM model.
schema: Pydantic model schema for structured data.
extraction_type: "block" or "schema".
chunk_token_threshold: Maximum tokens per chunk.
overlap_rate: Overlap between chunks.
word_token_rate: Word to token conversion rate.
apply_chunking: Whether to apply chunking.
base_url: The base URL for the API request.
api_base: The base URL for the API request.
extra_args: Additional arguments for the API request, such as temprature, max_tokens, etc.
verbose: Whether to print verbose output.
usages: List of individual token usages.
total_usage: Accumulated token usage.
"""
super().__init__(**kwargs)
self.provider = provider
self.api_token = api_token or PROVIDER_MODELS.get(provider, "no-token") or os.getenv("OPENAI_API_KEY")
self.instruction = instruction
self.extract_type = extraction_type
self.schema = schema
if schema:
self.extract_type = "schema"
self.chunk_token_threshold = kwargs.get("chunk_token_threshold", CHUNK_TOKEN_THRESHOLD)
self.overlap_rate = kwargs.get("overlap_rate", OVERLAP_RATE)
self.word_token_rate = kwargs.get("word_token_rate", WORD_TOKEN_RATE)
self.apply_chunking = kwargs.get("apply_chunking", True)
self.base_url = kwargs.get("base_url", None)
self.api_base = kwargs.get("api_base", kwargs.get("base_url", None))
self.extra_args = kwargs.get("extra_args", {})
if not self.apply_chunking:
self.chunk_token_threshold = 1e9
self.verbose = kwargs.get("verbose", False)
self.usages = [] # Store individual usages
self.total_usage = TokenUsage() # Accumulated usage
if not self.api_token:
raise ValueError("API token must be provided for LLMExtractionStrategy. Update the config.py or set OPENAI_API_KEY environment variable.")
def extract(self, url: str, ix:int, html: str) -> List[Dict[str, Any]]:
"""
Extract meaningful blocks or chunks from the given HTML using an LLM.
How it works:
1. Construct a prompt with variables.
2. Make a request to the LLM using the prompt.
3. Parse the response and extract blocks or chunks.
Args:
url: The URL of the webpage.
ix: Index of the block.
html: The HTML content of the webpage.
Returns:
A list of extracted blocks or chunks.
"""
if self.verbose:
# print("[LOG] Extracting blocks from URL:", url)
print(f"[LOG] Call LLM for {url} - block index: {ix}")
variable_values = {
"URL": url,
"HTML": escape_json_string(sanitize_html(html)),
}
prompt_with_variables = PROMPT_EXTRACT_BLOCKS
if self.instruction:
variable_values["REQUEST"] = self.instruction
prompt_with_variables = PROMPT_EXTRACT_BLOCKS_WITH_INSTRUCTION
if self.extract_type == "schema" and self.schema:
variable_values["SCHEMA"] = json.dumps(self.schema, indent=2)
prompt_with_variables = PROMPT_EXTRACT_SCHEMA_WITH_INSTRUCTION
for variable in variable_values:
prompt_with_variables = prompt_with_variables.replace(
"{" + variable + "}", variable_values[variable]
)
response = perform_completion_with_backoff(
self.provider,
prompt_with_variables,
self.api_token,
base_url=self.api_base or self.base_url,
extra_args = self.extra_args
) # , json_response=self.extract_type == "schema")
# Track usage
usage = TokenUsage(
completion_tokens=response.usage.completion_tokens,
prompt_tokens=response.usage.prompt_tokens,
total_tokens=response.usage.total_tokens,
completion_tokens_details=response.usage.completion_tokens_details.__dict__ if response.usage.completion_tokens_details else {},
prompt_tokens_details=response.usage.prompt_tokens_details.__dict__ if response.usage.prompt_tokens_details else {}
)
self.usages.append(usage)
# Update totals
self.total_usage.completion_tokens += usage.completion_tokens
self.total_usage.prompt_tokens += usage.prompt_tokens
self.total_usage.total_tokens += usage.total_tokens
try:
blocks = extract_xml_data(["blocks"], response.choices[0].message.content)['blocks']
blocks = json.loads(blocks)
for block in blocks:
block['error'] = False
except Exception as e:
parsed, unparsed = split_and_parse_json_objects(response.choices[0].message.content)
blocks = parsed
if unparsed:
blocks.append({
"index": 0,
"error": True,
"tags": ["error"],
"content": unparsed
})
if self.verbose:
print("[LOG] Extracted", len(blocks), "blocks from URL:", url, "block index:", ix)
return blocks
def _merge(self, documents, chunk_token_threshold, overlap):
"""
Merge documents into sections based on chunk_token_threshold and overlap.
"""
chunks = []
sections = []
total_tokens = 0
# Calculate the total tokens across all documents
for document in documents:
total_tokens += len(document.split(' ')) * self.word_token_rate
# Calculate the number of sections needed
num_sections = math.floor(total_tokens / chunk_token_threshold)
if num_sections < 1:
num_sections = 1 # Ensure there is at least one section
adjusted_chunk_threshold = total_tokens / num_sections
total_token_so_far = 0
current_chunk = []
for document in documents:
tokens = document.split(' ')
token_count = len(tokens) * self.word_token_rate
if total_token_so_far + token_count <= adjusted_chunk_threshold:
current_chunk.extend(tokens)
total_token_so_far += token_count
else:
# Ensure to handle the last section properly
if len(sections) == num_sections - 1:
current_chunk.extend(tokens)
continue
# Add overlap if specified
if overlap > 0 and current_chunk:
overlap_tokens = current_chunk[-overlap:]
current_chunk.extend(overlap_tokens)
sections.append(' '.join(current_chunk))
current_chunk = tokens
total_token_so_far = token_count
# Add the last chunk
if current_chunk:
sections.append(' '.join(current_chunk))
return sections
def run(self, url: str, sections: List[str]) -> List[Dict[str, Any]]:
"""
Process sections sequentially with a delay for rate limiting issues, specifically for LLMExtractionStrategy.
Args:
url: The URL of the webpage.
sections: List of sections (strings) to process.
Returns:
A list of extracted blocks or chunks.
"""
merged_sections = self._merge(
sections, self.chunk_token_threshold,
overlap= int(self.chunk_token_threshold * self.overlap_rate)
)
extracted_content = []
if self.provider.startswith("groq/"):
# Sequential processing with a delay
for ix, section in enumerate(merged_sections):
extract_func = partial(self.extract, url)
extracted_content.extend(extract_func(ix, sanitize_input_encode(section)))
time.sleep(0.5) # 500 ms delay between each processing
else:
# Parallel processing using ThreadPoolExecutor
# extract_func = partial(self.extract, url)
# for ix, section in enumerate(merged_sections):
# extracted_content.append(extract_func(ix, section))
with ThreadPoolExecutor(max_workers=4) as executor:
extract_func = partial(self.extract, url)
futures = [executor.submit(extract_func, ix, sanitize_input_encode(section)) for ix, section in enumerate(merged_sections)]
for future in as_completed(futures):
try:
extracted_content.extend(future.result())
except Exception as e:
if self.verbose:
print(f"Error in thread execution: {e}")
# Add error information to extracted_content
extracted_content.append({
"index": 0,
"error": True,
"tags": ["error"],
"content": str(e)
})
return extracted_content
def show_usage(self) -> None:
"""Print a detailed token usage report showing total and per-request usage."""
print("\n=== Token Usage Summary ===")
print(f"{'Type':<15} {'Count':>12}")
print("-" * 30)
print(f"{'Completion':<15} {self.total_usage.completion_tokens:>12,}")
print(f"{'Prompt':<15} {self.total_usage.prompt_tokens:>12,}")
print(f"{'Total':<15} {self.total_usage.total_tokens:>12,}")
print("\n=== Usage History ===")
print(f"{'Request #':<10} {'Completion':>12} {'Prompt':>12} {'Total':>12}")
print("-" * 48)
for i, usage in enumerate(self.usages, 1):
print(f"{i:<10} {usage.completion_tokens:>12,} {usage.prompt_tokens:>12,} {usage.total_tokens:>12,}")
#######################################################
# Strategies using clustering for text data extraction #
#######################################################
class CosineStrategy(ExtractionStrategy):
"""
Extract meaningful blocks or chunks from the given HTML using cosine similarity.
How it works:
1. Pre-filter documents using embeddings and semantic_filter.
2. Perform clustering using cosine similarity.
3. Organize texts by their cluster labels, retaining order.
4. Filter clusters by word count.
5. Extract meaningful blocks or chunks from the filtered clusters.
Attributes:
semantic_filter (str): A keyword filter for document filtering.
word_count_threshold (int): Minimum number of words per cluster.
max_dist (float): The maximum cophenetic distance on the dendrogram to form clusters.
linkage_method (str): The linkage method for hierarchical clustering.
top_k (int): Number of top categories to extract.
model_name (str): The name of the sentence-transformers model.
sim_threshold (float): The similarity threshold for clustering.
"""
def __init__(self, semantic_filter = None, word_count_threshold=10, max_dist=0.2, linkage_method='ward', top_k=3, model_name = 'sentence-transformers/all-MiniLM-L6-v2', sim_threshold = 0.3, **kwargs):
"""
Initialize the strategy with clustering parameters.
Args:
semantic_filter (str): A keyword filter for document filtering.
word_count_threshold (int): Minimum number of words per cluster.
max_dist (float): The maximum cophenetic distance on the dendrogram to form clusters.
linkage_method (str): The linkage method for hierarchical clustering.
top_k (int): Number of top categories to extract.
"""
super().__init__(**kwargs)
import numpy as np
self.semantic_filter = semantic_filter
self.word_count_threshold = word_count_threshold
self.max_dist = max_dist
self.linkage_method = linkage_method
self.top_k = top_k
self.sim_threshold = sim_threshold
self.timer = time.time()
self.verbose = kwargs.get("verbose", False)
self.buffer_embeddings = np.array([])
self.get_embedding_method = "direct"
self.device = get_device()
# import torch
# self.device = torch.device('cpu')
self.default_batch_size = calculate_batch_size(self.device)
if self.verbose:
print(f"[LOG] Loading Extraction Model for {self.device.type} device.")
# if False and self.device.type == "cpu":
# self.model = load_onnx_all_MiniLM_l6_v2()
# self.tokenizer = self.model.tokenizer
# self.get_embedding_method = "direct"
# else:
self.tokenizer, self.model = load_HF_embedding_model(model_name)
self.model.to(self.device)
self.model.eval()
self.get_embedding_method = "batch"
self.buffer_embeddings = np.array([])
# if model_name == "bert-base-uncased":
# self.tokenizer, self.model = load_bert_base_uncased()
# self.model.eval() # Ensure the model is in evaluation mode
# self.get_embedding_method = "batch"
# elif model_name == "BAAI/bge-small-en-v1.5":
# self.tokenizer, self.model = load_bge_small_en_v1_5()
# self.model.eval() # Ensure the model is in evaluation mode
# self.get_embedding_method = "batch"
# elif model_name == "sentence-transformers/all-MiniLM-L6-v2":
# self.model = load_onnx_all_MiniLM_l6_v2()
# self.tokenizer = self.model.tokenizer
# self.get_embedding_method = "direct"
if self.verbose:
print(f"[LOG] Loading Multilabel Classifier for {self.device.type} device.")
self.nlp, _ = load_text_multilabel_classifier()
# self.default_batch_size = 16 if self.device.type == 'cpu' else 64
if self.verbose:
print(f"[LOG] Model loaded {model_name}, models/reuters, took " + str(time.time() - self.timer) + " seconds")
def filter_documents_embeddings(self, documents: List[str], semantic_filter: str, at_least_k: int = 20) -> List[str]:
"""
Filter and sort documents based on the cosine similarity of their embeddings with the semantic_filter embedding.
Args:
documents (List[str]): A list of document texts.
semantic_filter (str): A keyword filter for document filtering.
at_least_k (int): The minimum number of documents to return.
Returns:
List[str]: A list of filtered and sorted document texts.
"""
if not semantic_filter:
return documents
if len(documents) < at_least_k:
at_least_k = len(documents) // 2
from sklearn.metrics.pairwise import cosine_similarity
# Compute embedding for the keyword filter
query_embedding = self.get_embeddings([semantic_filter])[0]
# Compute embeddings for the documents
document_embeddings = self.get_embeddings(documents)
# Calculate cosine similarity between the query embedding and document embeddings
similarities = cosine_similarity([query_embedding], document_embeddings).flatten()
# Filter documents based on the similarity threshold
filtered_docs = [(doc, sim) for doc, sim in zip(documents, similarities) if sim >= self.sim_threshold]
# If the number of filtered documents is less than at_least_k, sort remaining documents by similarity
if len(filtered_docs) < at_least_k:
remaining_docs = [(doc, sim) for doc, sim in zip(documents, similarities) if sim < self.sim_threshold]
remaining_docs.sort(key=lambda x: x[1], reverse=True)
filtered_docs.extend(remaining_docs[:at_least_k - len(filtered_docs)])
# Extract the document texts from the tuples
filtered_docs = [doc for doc, _ in filtered_docs]
return filtered_docs[:at_least_k]
def get_embeddings(self, sentences: List[str], batch_size=None, bypass_buffer=False):
"""
Get BERT embeddings for a list of sentences.
Args:
sentences (List[str]): A list of text chunks (sentences).
Returns:
NumPy array of embeddings.
"""
# if self.buffer_embeddings.any() and not bypass_buffer:
# return self.buffer_embeddings
if self.device.type in [ "cpu", "gpu", "cuda", "mps"]:
import torch
# Tokenize sentences and convert to tensor
if batch_size is None:
batch_size = self.default_batch_size
all_embeddings = []
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i + batch_size]
encoded_input = self.tokenizer(batch_sentences, padding=True, truncation=True, return_tensors='pt')
encoded_input = {key: tensor.to(self.device) for key, tensor in encoded_input.items()}
# Ensure no gradients are calculated
with torch.no_grad():
model_output = self.model(**encoded_input)
# Get embeddings from the last hidden state (mean pooling)
embeddings = model_output.last_hidden_state.mean(dim=1).cpu().numpy()
all_embeddings.append(embeddings)
self.buffer_embeddings = np.vstack(all_embeddings)
elif self.device.type == "cpu":
# self.buffer_embeddings = self.model(sentences)
if batch_size is None:
batch_size = self.default_batch_size
all_embeddings = []
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i + batch_size]
embeddings = self.model(batch_sentences)
all_embeddings.append(embeddings)
self.buffer_embeddings = np.vstack(all_embeddings)
return self.buffer_embeddings
def hierarchical_clustering(self, sentences: List[str], embeddings = None):
"""
Perform hierarchical clustering on sentences and return cluster labels.
Args:
sentences (List[str]): A list of text chunks (sentences).
Returns:
NumPy array of cluster labels.
"""
# Get embeddings
from scipy.cluster.hierarchy import linkage, fcluster
from scipy.spatial.distance import pdist
self.timer = time.time()
embeddings = self.get_embeddings(sentences, bypass_buffer=True)
# print(f"[LOG] 🚀 Embeddings computed in {time.time() - self.timer:.2f} seconds")
# Compute pairwise cosine distances
distance_matrix = pdist(embeddings, 'cosine')
# Perform agglomerative clustering respecting order
linked = linkage(distance_matrix, method=self.linkage_method)
# Form flat clusters
labels = fcluster(linked, self.max_dist, criterion='distance')
return labels
def filter_clusters_by_word_count(self, clusters: Dict[int, List[str]]) -> Dict[int, List[str]]:
"""
Filter clusters to remove those with a word count below the threshold.
Args:
clusters (Dict[int, List[str]]): Dictionary of clusters.
Returns:
Dict[int, List[str]]: Filtered dictionary of clusters.
"""
filtered_clusters = {}
for cluster_id, texts in clusters.items():
# Concatenate texts for analysis
full_text = " ".join(texts)
# Count words
word_count = len(full_text.split())
# Keep clusters with word count above the threshold
if word_count >= self.word_count_threshold:
filtered_clusters[cluster_id] = texts
return filtered_clusters
def extract(self, url: str, html: str, *q, **kwargs) -> List[Dict[str, Any]]:
"""
Extract clusters from HTML content using hierarchical clustering.
Args:
url (str): The URL of the webpage.
html (str): The HTML content of the webpage.
Returns:
List[Dict[str, Any]]: A list of processed JSON blocks.
"""
# Assume `html` is a list of text chunks for this strategy
t = time.time()
text_chunks = html.split(self.DEL) # Split by lines or paragraphs as needed
# Pre-filter documents using embeddings and semantic_filter
text_chunks = self.filter_documents_embeddings(text_chunks, self.semantic_filter)
if not text_chunks:
return []
# Perform clustering
labels = self.hierarchical_clustering(text_chunks)
# print(f"[LOG] 🚀 Clustering done in {time.time() - t:.2f} seconds")
# Organize texts by their cluster labels, retaining order
t = time.time()
clusters = {}
for index, label in enumerate(labels):
clusters.setdefault(label, []).append(text_chunks[index])
# Filter clusters by word count
filtered_clusters = self.filter_clusters_by_word_count(clusters)
# Convert filtered clusters to a sorted list of dictionaries
cluster_list = [{"index": int(idx), "tags" : [], "content": " ".join(filtered_clusters[idx])} for idx in sorted(filtered_clusters)]
if self.verbose:
print(f"[LOG] 🚀 Assign tags using {self.device}")
if self.device.type in ["gpu", "cuda", "mps", "cpu"]:
labels = self.nlp([cluster['content'] for cluster in cluster_list])
for cluster, label in zip(cluster_list, labels):
cluster['tags'] = label
# elif self.device.type == "cpu":
# # Process the text with the loaded model
# texts = [cluster['content'] for cluster in cluster_list]
# # Batch process texts
# docs = self.nlp.pipe(texts, disable=["tagger", "parser", "ner", "lemmatizer"])
# for doc, cluster in zip(docs, cluster_list):
# tok_k = self.top_k
# top_categories = sorted(doc.cats.items(), key=lambda x: x[1], reverse=True)[:tok_k]
# cluster['tags'] = [cat for cat, _ in top_categories]
# for cluster in cluster_list:
# doc = self.nlp(cluster['content'])
# tok_k = self.top_k
# top_categories = sorted(doc.cats.items(), key=lambda x: x[1], reverse=True)[:tok_k]
# cluster['tags'] = [cat for cat, _ in top_categories]
if self.verbose:
print(f"[LOG] 🚀 Categorization done in {time.time() - t:.2f} seconds")
return cluster_list
def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
"""
Process sections using hierarchical clustering.
Args:
url (str): The URL of the webpage.
sections (List[str]): List of sections (strings) to process.
Returns:
"""
# This strategy processes all sections together
return self.extract(url, self.DEL.join(sections), **kwargs)
#######################################################
# New extraction strategies for JSON-based extraction #
#######################################################
class JsonElementExtractionStrategy(ExtractionStrategy):
"""
Abstract base class for extracting structured JSON from HTML content.
How it works:
1. Parses HTML content using the `_parse_html` method.
2. Uses a schema to define base selectors, fields, and transformations.
3. Extracts data hierarchically, supporting nested fields and lists.
4. Handles computed fields with expressions or functions.
Attributes:
DEL (str): Delimiter used to combine HTML sections. Defaults to '\n'.
schema (Dict[str, Any]): The schema defining the extraction rules.
verbose (bool): Enables verbose logging for debugging purposes.
Methods:
extract(url, html_content, *q, **kwargs): Extracts structured data from HTML content.
_extract_item(element, fields): Extracts fields from a single element.
_extract_single_field(element, field): Extracts a single field based on its type.
_apply_transform(value, transform): Applies a transformation to a value.
_compute_field(item, field): Computes a field value using an expression or function.
run(url, sections, *q, **kwargs): Combines HTML sections and runs the extraction strategy.
Abstract Methods:
_parse_html(html_content): Parses raw HTML into a structured format (e.g., BeautifulSoup or lxml).
_get_base_elements(parsed_html, selector): Retrieves base elements using a selector.
_get_elements(element, selector): Retrieves child elements using a selector.
_get_element_text(element): Extracts text content from an element.
_get_element_html(element): Extracts raw HTML from an element.
_get_element_attribute(element, attribute): Extracts an attribute's value from an element.
"""
DEL = '\n'
def __init__(self, schema: Dict[str, Any], **kwargs):
"""
Initialize the JSON element extraction strategy with a schema.
Args:
schema (Dict[str, Any]): The schema defining the extraction rules.
"""
super().__init__(**kwargs)
self.schema = schema
self.verbose = kwargs.get('verbose', False)
def extract(self, url: str, html_content: str, *q, **kwargs) -> List[Dict[str, Any]]:
"""
Extract structured data from HTML content.
How it works:
1. Parses the HTML content using the `_parse_html` method.
2. Identifies base elements using the schema's base selector.
3. Extracts fields from each base element using `_extract_item`.
Args:
url (str): The URL of the page being processed.
html_content (str): The raw HTML content to parse and extract.
*q: Additional positional arguments.
**kwargs: Additional keyword arguments for custom extraction.
Returns:
List[Dict[str, Any]]: A list of extracted items, each represented as a dictionary.
"""
parsed_html = self._parse_html(html_content)
base_elements = self._get_base_elements(parsed_html, self.schema['baseSelector'])
results = []
for element in base_elements:
# Extract base element attributes
item = {}
if 'baseFields' in self.schema:
for field in self.schema['baseFields']:
value = self._extract_single_field(element, field)
if value is not None:
item[field['name']] = value
# Extract child fields
field_data = self._extract_item(element, self.schema['fields'])
item.update(field_data)
if item:
results.append(item)
return results
@abstractmethod
def _parse_html(self, html_content: str):
"""Parse HTML content into appropriate format"""
pass
@abstractmethod
def _get_base_elements(self, parsed_html, selector: str):
"""Get all base elements using the selector"""
pass
@abstractmethod
def _get_elements(self, element, selector: str):
"""Get child elements using the selector"""
pass
def _extract_field(self, element, field):
try:
if field['type'] == 'nested':
nested_elements = self._get_elements(element, field['selector'])
nested_element = nested_elements[0] if nested_elements else None
return self._extract_item(nested_element, field['fields']) if nested_element else {}
if field['type'] == 'list':
elements = self._get_elements(element, field['selector'])
return [self._extract_list_item(el, field['fields']) for el in elements]
if field['type'] == 'nested_list':
elements = self._get_elements(element, field['selector'])
return [self._extract_item(el, field['fields']) for el in elements]
return self._extract_single_field(element, field)
except Exception as e:
if self.verbose:
print(f"Error extracting field {field['name']}: {str(e)}")
return field.get('default')
def _extract_single_field(self, element, field):
"""
Extract a single field based on its type.
How it works:
1. Selects the target element using the field's selector.
2. Extracts the field value based on its type (e.g., text, attribute, regex).
3. Applies transformations if defined in the schema.
Args:
element: The base element to extract the field from.
field (Dict[str, Any]): The field definition in the schema.
Returns:
Any: The extracted field value.
"""
if 'selector' in field:
selected = self._get_elements(element, field['selector'])
if not selected:
return field.get('default')
selected = selected[0]
else:
selected = element
value = None
if field['type'] == 'text':
value = self._get_element_text(selected)
elif field['type'] == 'attribute':
value = self._get_element_attribute(selected, field['attribute'])
elif field['type'] == 'html':
value = self._get_element_html(selected)
elif field['type'] == 'regex':
text = self._get_element_text(selected)
match = re.search(field['pattern'], text)
value = match.group(1) if match else None
if 'transform' in field:
value = self._apply_transform(value, field['transform'])
return value if value is not None else field.get('default')
def _extract_list_item(self, element, fields):
item = {}
for field in fields:
value = self._extract_single_field(element, field)
if value is not None:
item[field['name']] = value
return item
def _extract_item(self, element, fields):
"""
Extracts fields from a given element.
How it works:
1. Iterates through the fields defined in the schema.
2. Handles computed, single, and nested field types.
3. Updates the item dictionary with extracted field values.
Args:
element: The base element to extract fields from.
fields (List[Dict[str, Any]]): The list of fields to extract.
Returns:
Dict[str, Any]: A dictionary representing the extracted item.
"""
item = {}
for field in fields:
if field['type'] == 'computed':
value = self._compute_field(item, field)
else:
value = self._extract_field(element, field)
if value is not None:
item[field['name']] = value
return item
def _apply_transform(self, value, transform):
"""
Apply a transformation to a value.
How it works:
1. Checks the transformation type (e.g., `lowercase`, `strip`).
2. Applies the transformation to the value.
3. Returns the transformed value.
Args:
value (str): The value to transform.
transform (str): The type of transformation to apply.
Returns:
str: The transformed value.
"""
if transform == 'lowercase':
return value.lower()
elif transform == 'uppercase':
return value.upper()
elif transform == 'strip':
return value.strip()
return value
def _compute_field(self, item, field):
try:
if 'expression' in field:
return eval(field['expression'], {}, item)
elif 'function' in field:
return field['function'](item)
except Exception as e:
if self.verbose:
print(f"Error computing field {field['name']}: {str(e)}")
return field.get('default')
def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
"""
Run the extraction strategy on a combined HTML content.
How it works:
1. Combines multiple HTML sections using the `DEL` delimiter.
2. Calls the `extract` method with the combined HTML.
Args:
url (str): The URL of the page being processed.
sections (List[str]): A list of HTML sections.
*q: Additional positional arguments.
**kwargs: Additional keyword arguments for custom extraction.
Returns:
List[Dict[str, Any]]: A list of extracted items.
"""
combined_html = self.DEL.join(sections)
return self.extract(url, combined_html, **kwargs)
@abstractmethod
def _get_element_text(self, element) -> str:
"""Get text content from element"""
pass
@abstractmethod
def _get_element_html(self, element) -> str:
"""Get HTML content from element"""
pass
@abstractmethod
def _get_element_attribute(self, element, attribute: str):
"""Get attribute value from element"""
pass
class JsonCssExtractionStrategy(JsonElementExtractionStrategy):
"""
Concrete implementation of `JsonElementExtractionStrategy` using CSS selectors.
How it works:
1. Parses HTML content with BeautifulSoup.
2. Selects elements using CSS selectors defined in the schema.
3. Extracts field data and applies transformations as defined.
Attributes:
schema (Dict[str, Any]): The schema defining the extraction rules.
verbose (bool): Enables verbose logging for debugging purposes.
Methods:
_parse_html(html_content): Parses HTML content into a BeautifulSoup object.
_get_base_elements(parsed_html, selector): Selects base elements using a CSS selector.
_get_elements(element, selector): Selects child elements using a CSS selector.
_get_element_text(element): Extracts text content from a BeautifulSoup element.
_get_element_html(element): Extracts the raw HTML content of a BeautifulSoup element.
_get_element_attribute(element, attribute): Retrieves an attribute value from a BeautifulSoup element.
"""
def __init__(self, schema: Dict[str, Any], **kwargs):
kwargs['input_format'] = 'html' # Force HTML input
super().__init__(schema, **kwargs)
def _parse_html(self, html_content: str):
return BeautifulSoup(html_content, 'html.parser')
def _get_base_elements(self, parsed_html, selector: str):
return parsed_html.select(selector)
def _get_elements(self, element, selector: str):
# Return all matching elements using select() instead of select_one()
# This ensures that we get all elements that match the selector, not just the first one
return element.select(selector)
def _get_element_text(self, element) -> str:
return element.get_text(strip=True)
def _get_element_html(self, element) -> str:
return str(element)
def _get_element_attribute(self, element, attribute: str):
return element.get(attribute)
class JsonXPathExtractionStrategy(JsonElementExtractionStrategy):
"""
Concrete implementation of `JsonElementExtractionStrategy` using XPath selectors.
How it works:
1. Parses HTML content into an lxml tree.
2. Selects elements using XPath expressions.
3. Converts CSS selectors to XPath when needed.
Attributes:
schema (Dict[str, Any]): The schema defining the extraction rules.