This repository has been archived by the owner on May 4, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathmodel.py
166 lines (127 loc) · 4.28 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from keras.models import Model
from keras.layers import Input, Dense, Flatten, Reshape, Dropout, Add,Concatenate, Lambda
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D
from keras.initializers import RandomNormal
from keras.optimizers import Adam
from pixel_shuffler import PixelShuffler
import tensorflow as tf
from keras_contrib.losses import DSSIMObjective
from keras import losses
import time
from keras.utils import multi_gpu_model
class penalized_loss(object):
def __init__(self,mask,lossFunc,maskProp= 1.0):
self.mask = mask
self.lossFunc=lossFunc
self.maskProp = maskProp
self.maskaskinvProp = 1-maskProp
def __call__(self,y_true, y_pred):
tro, tgo, tbo = tf.split(y_true,3, 3 )
pro, pgo, pbo = tf.split(y_pred,3, 3 )
tr = tro
tg = tgo
tb = tbo
pr = pro
pg = pgo
pb = pbo
m = self.mask
m = m*self.maskProp
m += self.maskaskinvProp
tr *= m
tg *= m
tb *= m
pr *= m
pg *= m
pb *= m
y = tf.concat([tr, tg, tb],3)
p = tf.concat([pr, pg, pb],3)
#yo = tf.stack([tro,tgo,tbo],3)
#po = tf.stack([pro,pgo,pbo],3)
return self.lossFunc(y,p)
optimizer = Adam( lr=5e-5, beta_1=0.5, beta_2=0.999 )
IMAGE_SHAPE = (64,64,3)
ENCODER_DIM = 1024
conv_init = RandomNormal(0, 0.02)
gamma_init = RandomNormal(1., 0.02)
def __conv_init(a):
print("conv_init", a)
k = RandomNormal(0, 0.02)(a) # for convolution kernel
k.conv_weight = True
return k
def upscale_ps(filters, use_norm=True):
def block(x):
x = Conv2D(filters*4, kernel_size=3, use_bias=False, kernel_initializer=RandomNormal(0, 0.02), padding='same' )(x)
x = LeakyReLU(0.1)(x)
x = PixelShuffler()(x)
return x
return block
def res_block(input_tensor, f):
x = input_tensor
x = Conv2D(f, kernel_size=3, kernel_initializer=conv_init, use_bias=False, padding="same")(x)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2D(f, kernel_size=3, kernel_initializer=conv_init, use_bias=False, padding="same")(x)
x = Add()([x, input_tensor])
x = LeakyReLU(alpha=0.2)(x)
return x
def conv( filters ):
def block(x):
x = Conv2D( filters, kernel_size=5, strides=2, padding='same' )(x)
x = LeakyReLU(0.1)(x)
return x
return block
def upscale( filters ):
def block(x):
x = Conv2D( filters*4, kernel_size=3, padding='same' )(x)
x = LeakyReLU(0.1)(x)
x = PixelShuffler()(x)
return x
return block
def Encoder():
input_ = Input( shape=IMAGE_SHAPE )
x = conv( 128)(input_)
x = conv( 256)(x)
x = conv( 512)(x)
x = conv(1024)(x)
x = Dense( ENCODER_DIM )( Flatten()(x) )
x = Dense(4*4*1024)(x)
x = Reshape((4,4,1024))(x)
x = upscale(512)(x)
return Model( input_, [x] )
def Decoder(name):
input_ = Input( shape=(8,8,512) )
skip_in = Input( shape=(8,8,512) )
x = input_
x = upscale(512)(x)
x = res_block(x, 512)
x = upscale(256)(x)
x = res_block(x, 256)
x = upscale(128)(x)
x = res_block(x, 128)
x = upscale(64)(x)
x = Conv2D( 3, kernel_size=5, padding='same', activation='sigmoid' )(x)
y = input_
y = upscale(512)(y)
y = upscale(256)(y)
y = upscale(128)(y)
y = upscale(64)(y)
y = Conv2D( 1, kernel_size=5, padding='same', activation='sigmoid' )(y)
return Model( [input_], outputs=[x,y] )
encoder = Encoder()
decoder_A = Decoder('MA')
decoder_B = Decoder('MB')
print(encoder.summary())
print(decoder_A.summary())
x1 = Input( shape=IMAGE_SHAPE )
x2 = Input( shape=IMAGE_SHAPE )
m1 = Input( shape=(64*2,64*2,1) )
m2 = Input( shape=(64*2,64*2,1) )
autoencoder_A = Model( [x1,m1], decoder_A( encoder(x1) ) )
#autoencoder_A = multi_gpu_model( autoencoder_A ,2)
autoencoder_B = Model( [x2,m2], decoder_B( encoder(x2) ) )
#autoencoder_B = multi_gpu_model( autoencoder_B ,2)
o1,om1 = decoder_A( encoder(x1))
o2,om2 = decoder_B( encoder(x2))
DSSIM = DSSIMObjective()
autoencoder_A.compile( optimizer=optimizer, loss=[ penalized_loss(m1, DSSIM),'mse'] )
autoencoder_B.compile( optimizer=optimizer, loss=[ penalized_loss(m2, DSSIM),'mse'] )