-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.lispy
172 lines (143 loc) · 5.18 KB
/
test.lispy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
;; -*- mode: scheme -*-
(prog
(define id (lambda (x) x))
(define succ (lambda (x) (+ 1 x)))
(define pred (lambda (x) (- 1 x)))
(define const (lambda (x) (lambda () x)))
(define compose (lambda (f g) (lambda (x) (f (g x)))))
(define not (lambda (x) (if x false true)))
(assert (= (id 1) 1))
(assert (= (succ 1) 2))
(assert (= ((compose succ succ) 1) 3))
(assert (= ((const 1) 2) 1))
;; Arity is not being take in account, any function can
;; be called with any number of arguments, this is more
;; an implementation detail (or a bug) than something
;; intentional
(assert (= ((lambda () :foo) 1 2 3 4 5) :foo))
;; Let macro
(define-macro let (x e1 e2)
((lambda (x) e2) e1))
(assert (= (let x 1 (+ x x)) 2))
(assert (= (let f (lambda (y) (* y 3)) (f 4)) 12))
;; and macro
(define-macro and (a b) (if a b false))
(assert (= (and true true) true))
(assert (= (and true false) false))
(assert (= (and false true) false))
(assert (= (and false false) false))
;; or macro
(define-macro or (a b) (if a true b))
(assert (= (or true true) true))
(assert (= (or true false) true))
(assert (= (or false true) true))
(assert (= (or false false) false))
;; implies macro
(define-macro implies (a b) (if a b true))
(assert (= (implies true true) true))
(assert (= (implies true false) false))
(assert (= (implies false true) true))
(assert (= (implies false false) true))
;; setup an alias
;; xor macro
(define-macro xor (a b) (if a (not b) b))
(assert (= (xor true true) false))
(assert (= (xor true false) true))
(assert (= (xor false true) true))
(assert (= (xor false false) false))
;; We can absue the substitution mechanism and define
;; let like this
(define-macro letin (x = e1 in e2)
((lambda (x) e2) e1))
(assert (= (letin x = 1 in (+ x x)) 2))
;; infix macro
(define-macro infix (a f b) (f a b))
(assert (= (infix 1 + 2) 3))
(define -> implies)
(assert (= (infix true -> true) true))
(assert (= (infix true -> false) false))
(assert (= (infix false -> true) true))
(assert (= (infix false -> false) true))
;; List Scott encoding
(define list-nil (lambda () (lambda (cons nil'') (nil''))))
(define list-cons (lambda (cons nil') (lambda (cons' nil'') (cons' cons nil'))))
(define l (list-cons 1 (list-cons 2 (list-cons 3 (list-nil)))))
(define list-fold
(lambda (l f acc k)
(let empty (lambda () acc)
(let not-empty
(lambda (head tail) (k tail f (f head acc) k))
(l not-empty empty)))))
(assert (= (l (lambda (head tail) head) (lambda () 0)) 1))
(assert (= (fix list-fold l + 0) 6))
;; Testing closure capturing
(define x 1)
(assert (= ((lambda () x) 100) x))
(assert (= ((lambda () 100)) 100)) ;; IFFE
(define f (lambda (k) (lambda () (k 1))))
(assert (= ((f succ)) 2))
;; Factorial with fix
(define fact (lambda (x k) (if (= x 0) 1 (* x (k (- x 1) k)))))
(assert (= (fix fact 5) 120))
;; Factorial without fix
(define fact' (lambda (x) (if (= x 0) 1 (* x (fact' (- x 1))))))
(assert (= (fact' 5) 120))
;; Pairs
(define pair (lambda (a b) (lambda (f) (f a b))))
(define fst (lambda (p) (p (lambda (a b) a))))
(define snd (lambda (p) (p (lambda (a b) b))))
(let p (pair :a :b)
(prog
(assert (= (fst p) :a))
(assert (= (snd p) :b))))
;; Maps
(define map.empty (lambda (k v m) (lambda () nil)))
(define map.add (lambda (k v m)
(lambda (k')
(if (= k k')
v
(m k')))))
(let m (map.empty)
(let m (map.add :foo 1 m)
(let m (map.add :bar 2 m)
(prog
(assert (= (+ (m :foo) (m :bar)) 3))
(assert (= (m :tar) nil))
))))
;; monads are encoded as a pair e, with bind as fst and return as
;; snd e stands for evidence
;; borrowed from https://stackoverflow.com/a/8936209/652528
(define bind (lambda (e) (fst e)))
(define return (lambda (e) (snd e)))
;; option monad
(define opt.some (lambda (x) (lambda (f z) (f x))))
(define opt.nothing (lambda (f z) z))
(define opt.bind (lambda (m f) (m f opt.nothing)))
(define opt.return opt.some)
(define opt.monad (pair opt.bind opt.return))
(define opt.succ (compose opt.return succ))
(define opt.pred (lambda (x)
(if (> x 0)
(opt.return (pred x))
opt.nothing)))
(define opt.some? (lambda (m) (m (const true) false)))
(define opt.nothing? (compose not opt.some?))
(assert (= ((opt.some 1) (const :is_some) :is_nothing) :is_some))
(assert (= (opt.nothing (const :is_some) :is_nothing) :is_nothing))
(assert (= ((opt.return 1) (const :is_some) :is_nothing) :is_some))
(assert (= ((opt.some 1) succ :is_nothing) 2))
(assert (= ((opt.bind (opt.some 1) opt.succ) id 0) 2))
(assert (= ((opt.bind opt.nothing opt.succ) id 0) 0))
(assert (= ((opt.bind (opt.some 1) opt.pred) id :negative) 0))
(assert (= ((opt.bind (opt.some 0) opt.pred) id :negative) :negative))
(assert (opt.some? (opt.some 1)))
(assert (opt.nothing? opt.nothing))
;; Lets try lists WIP
(define list.nil (lambda (c z) z))
(define list.cons (lambda (h t c z) (c h (t c z))))
(define list.bind (lambda (m f) (list.concat (list.map f m))))
(define list.return (lambda (x) (list.cons x list.nil)))
(define list.monad (pair list.bind list.return))
(define list.concat (lambda (l) (l list.append list.nil)))
(define list.append (lambda (x y) (x list.cons y)))
)