-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_enc.py
executable file
·82 lines (64 loc) · 2.89 KB
/
train_enc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import torch
from utils import EntireDataset, get_network
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-net', type=str, required=True, help='net type')
parser.add_argument('-dataset', type=str, required=True,
help='the dataset you want to work on')
parser.add_argument('-gpu', action='store_true', default=False,
help='use gpu or not')
parser.add_argument('-b', type=int, default=128, help='batch size for dataloader')
args = parser.parse_args()
if args.dataset == 'MNIST':
raise Exception("MNIST is not supported for this experiment.")
train_X = np.load(f'data/{args.dataset}/train_X.npy')
train_Y = np.load(f'data/{args.dataset}/train_Y.npy')
test_X = np.load(f'data/{args.dataset}/test_X.npy')
test_Y = np.load(f'data/{args.dataset}/test_Y.npy')
transform_train = torch.nn.Sequential(
transforms.RandomCrop(32, padding=[4]),
transforms.RandomHorizontalFlip(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
)
transform_test = torch.nn.Sequential(
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
)
transform_train = torch.jit.script(transform_train)
transform_test = torch.jit.script(transform_test)
trainset = EntireDataset(train_X, train_Y, test_X, test_Y, train=True)
train_loader = DataLoader(
trainset, shuffle=True, num_workers=4, batch_size=args.b)
testset = EntireDataset(train_X, train_Y, test_X, test_Y, train=False)
test_loader = DataLoader(
testset, shuffle=False, num_workers=4, batch_size=args.b)
loss_fn = torch.nn.CrossEntropyLoss()
net = get_network(args)
net.train()
optimizer = torch.optim.SGD(
net.parameters(), lr=1e-1, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
for it in range(200):
for i, (img, label) in enumerate(train_loader):
img = transform_train(img)
if args.gpu:
img, label = img.cuda(), label.cuda()
optimizer.zero_grad()
yhat = net(img)
loss = loss_fn(yhat, label)
loss.backward()
optimizer.step()
acc, count = 0, 0
for img, label in test_loader:
img = transform_test(img)
if args.gpu:
img, label = img.cuda(), label.cuda()
yhat = net(img).squeeze()
acc += torch.sum(torch.argmax(yhat, axis=1) == label)
count += len(yhat)
print(f"Iter {it}: {round((acc/count).item()*100, 1)}%.")
torch.save(net.state_dict(), f'networks/{args.dataset}/{args.net}.pth')
scheduler.step()