You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
\item$\kappa=\forall a::\alpha.\;C\;a\to\U_u$ where $u$ is a fresh universe variable if $\Gamma;t:F\vdash K\LE$, otherwise $\kappa=\forall a::\alpha.\;C\;a\to\P$,
189
+
\item$\kappa=\forall a::\alpha.\;P\;a\to\U_u$ where $u$ is a fresh universe variable if $\Gamma;t:F\vdash K\LE$, otherwise $\kappa=\forall a::\alpha.\;P\;a\to\P$,
190
190
\item$\vep$ is a sequence of the same length as $K$, where $\vep_c=\forall b::\beta.\;\forall v::\delta.\;C\;p[b]\;(c\;b)$,
191
191
\item$\delta$ is a sequence of the same length as $\gamma$, where $\delta_i=\forall x::\xi_i.\;C\;\pi_i[b,x]\;(u_i\;x)$.
Copy file name to clipboardExpand all lines: soundness.tex
+2-17
Original file line number
Diff line number
Diff line change
@@ -159,7 +159,7 @@ \subsection{Soundness}
159
159
\item Forall. Suppose $\Gamma\vdash\alpha:\U_{\ell_1}$ and $\Gamma,x:\alpha\vdash\beta:\U_{\ell_2}$. Then $n:=\lvl(\Gamma,x:\alpha\vdash\beta)=\scott{\ell_2}$. By the IH, $\bar\alpha\in U_{\scott{\ell_1}}$ and $\bar\beta(x)\in U_n$ for all $x\in\bar\alpha$. The result type is a universe so part 2 does not apply, and part 1 applies only when $n=0$.
160
160
\begin{itemize}
161
161
\item If $n=0$, then $\scott{\Gamma\vdash\forall x:\alpha.\;\beta}_\gamma=\{\bullet\}\cap\bigcap_{x\in\bar\alpha}\bar\beta(x)\subseteq\{\bullet\}$.
162
-
\item If $n\ne0$, then $\scott{\Gamma\vdash\forall x:\alpha.\;\beta}_\gamma=\prod_{x\in\bar\alpha}\bar\beta(x)\in U_{\max(\scott{\ell_1},\scott{\ell_2})}$, provided that the $\kappa$ sequence is $\max(\scott{\ell_1},\scott{\ell_2})$-correct, because if $\kappa_{\max(\scott{\ell_1},\scott{\ell_2})-1}$ is inaccessible then $U_{\max(\scott{\ell_1},\scott{\ell_2})}$ is closed under dependent products.
162
+
\item If $n\ne0$, then $\scott{\Gamma\vdash\forall x:\alpha.\;\beta}_\gamma=\prod_{x\in\bar\alpha}\bar\beta(x)\in U_{\max(\scott{\ell_1},\scott{\ell_2})}$, provided that the $\kappa$ sequence is $\max(\scott{\ell_1},\scott{\ell_2})$-correct, because if $\kappa_{\max(\scott{\ell_1},\scott{\ell_2})-1}$ is inaccessible then\\$U_{\max(\scott{\ell_1},\scott{\ell_2})}$ is closed under dependent products.
\item Proof irrelevance. If $\Gamma\vdash h,h':p:\P$, then by part 2 of the theorem, $\scott{\Gamma\vdash h}_\gamma=\bullet=\scott{\Gamma\vdash h'}_\gamma$.
235
235
\item Delta. If $\mathsf{def}\;c:\alpha:=e$, then $\scott{\Gamma\vdash c}_\gamma=\scott{\Gamma\vdash e}_\gamma$ by definition.
236
236
\item Zeta. If $\mathsf{def}\;c:\alpha:=e$, then $\scott{\Gamma\vdash\elet{x:\alpha:=e_1}{e_2}}_\gamma=\scott{\Gamma\vdash e_2[e_1/x]}_\gamma$ by definition. (We don't use the substitution lemma here because it is not necessarily true that $\Gamma,x:\alpha\vdash e_2$ is well typed.)
so that the statements on the right are the IH. We want to show that $\scott{\Gamma\vdash\lift_r\;\beta\;f\;h\;(\mk_r\;a)}_\gamma=\scott{\Gamma\vdash f\;a}_\gamma$, or $\scott{\Gamma\vdash\lift_r\;\beta\;f\;h}_\gamma([a]_{\sim})=\bar f(a)$; but this is by definition (we showed it is well defined given the assumptions on $\alpha,r,\beta,f,h$ already).
237
+
\item Quotient iota. $\scott{\Gamma\vdash\lift_r\;\beta\;f\;h\;(\mk_r\;a)}_\gamma=\scott{\Gamma\vdash\lift_r\;\beta\;f\;h}_\gamma([\bar a]_{\sim})=\bar f(\bar a)$ by definition (we showed it is well defined given the assumptions on $\alpha,r,\beta,f,h$ already).
0 commit comments