Skip to content

Commit 0e3ddfe

Browse files
committed
simplify church rosser, remove eta reduction
1 parent 550db2d commit 0e3ddfe

File tree

3 files changed

+44
-97
lines changed

3 files changed

+44
-97
lines changed

Diff for: axioms.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -186,7 +186,7 @@ \subsubsection{The recursor}
186186
$$\frac{\Gamma,t:F\vdash K\spec}{\Gamma\vdash\rec_P:\forall C:\kappa.\;\forall e::\vep.\;\forall a::\alpha.\;\forall z:P\;a.\;C\;a\;z}$$
187187
where:
188188
\begin{itemize}
189-
\item $\kappa=\forall a::\alpha.\;C\;a\to\U_u$ where $u$ is a fresh universe variable if $\Gamma;t:F\vdash K\LE$, otherwise $\kappa=\forall a::\alpha.\;C\;a\to\P$,
189+
\item $\kappa=\forall a::\alpha.\;P\;a\to\U_u$ where $u$ is a fresh universe variable if $\Gamma;t:F\vdash K\LE$, otherwise $\kappa=\forall a::\alpha.\;P\;a\to\P$,
190190
\item $\vep$ is a sequence of the same length as $K$, where $\vep_c=\forall b::\beta.\;\forall v::\delta.\;C\;p[b]\;(c\;b)$,
191191
\item $\delta$ is a sequence of the same length as $\gamma$, where $\delta_i=\forall x::\xi_i.\;C\;\pi_i[b,x]\;(u_i\;x)$.
192192
\end{itemize}

Diff for: soundness.tex

+2-17
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ \subsection{Soundness}
159159
\item Forall. Suppose $\Gamma\vdash\alpha:\U_{\ell_1}$ and $\Gamma,x:\alpha\vdash\beta:\U_{\ell_2}$. Then $n:=\lvl(\Gamma,x:\alpha\vdash\beta)=\scott{\ell_2}$. By the IH, $\bar\alpha\in U_{\scott{\ell_1}}$ and $\bar\beta(x)\in U_n$ for all $x\in\bar\alpha$. The result type is a universe so part 2 does not apply, and part 1 applies only when $n=0$.
160160
\begin{itemize}
161161
\item If $n=0$, then $\scott{\Gamma\vdash\forall x:\alpha.\;\beta}_\gamma=\{\bullet\}\cap\bigcap_{x\in \bar\alpha}\bar\beta(x)\subseteq\{\bullet\}$.
162-
\item If $n\ne 0$, then $\scott{\Gamma\vdash\forall x:\alpha.\;\beta}_\gamma=\prod_{x\in \bar\alpha}\bar\beta(x)\in U_{\max(\scott{\ell_1},\scott{\ell_2})}$, provided that the $\kappa$ sequence is $\max(\scott{\ell_1},\scott{\ell_2})$-correct, because if $\kappa_{\max(\scott{\ell_1},\scott{\ell_2})-1}$ is inaccessible then $U_{\max(\scott{\ell_1},\scott{\ell_2})}$ is closed under dependent products.
162+
\item If $n\ne 0$, then $\scott{\Gamma\vdash\forall x:\alpha.\;\beta}_\gamma=\prod_{x\in \bar\alpha}\bar\beta(x)\in U_{\max(\scott{\ell_1},\scott{\ell_2})}$, provided that the $\kappa$ sequence is $\max(\scott{\ell_1},\scott{\ell_2})$-correct, because if $\kappa_{\max(\scott{\ell_1},\scott{\ell_2})-1}$ is inaccessible then\\ $U_{\max(\scott{\ell_1},\scott{\ell_2})}$ is closed under dependent products.
163163
\end{itemize}
164164
\item $\bot$: $\scott{\vdash\bot}_{()}=\emptyset\subseteq\{\bullet\}$.
165165
\item $\rec_\bot$: $\scott{\Gamma\vdash\rec^C_\bot}_\gamma=\emptyset\in\scott{\Gamma\vdash\bot\to C}_\gamma=\prod_{x\in\emptyset}\bar C$.
@@ -234,22 +234,7 @@ \subsection{Soundness}
234234
\item Proof irrelevance. If $\Gamma\vdash h,h':p:\P$, then by part 2 of the theorem, $\scott{\Gamma\vdash h}_\gamma=\bullet=\scott{\Gamma\vdash h'}_\gamma$.
235235
\item Delta. If $\mathsf{def}\;c:\alpha:=e$, then $\scott{\Gamma\vdash c}_\gamma=\scott{\Gamma\vdash e}_\gamma$ by definition.
236236
\item Zeta. If $\mathsf{def}\;c:\alpha:=e$, then $\scott{\Gamma\vdash\elet{x:\alpha:=e_1}{e_2}}_\gamma=\scott{\Gamma\vdash e_2[e_1/x]}_\gamma$ by definition. (We don't use the substitution lemma here because it is not necessarily true that $\Gamma,x:\alpha\vdash e_2$ is well typed.)
237-
\item Quotient iota. Suppose
238-
\begin{align*}
239-
\Gamma&\vdash\alpha:\U_\ell&
240-
\bar\alpha&\in U_{\scott{\ell}}\\
241-
\Gamma&\vdash r:\alpha\to\alpha\to\P&
242-
\overline{\bar r}&\subseteq\bar\alpha\times\bar\alpha\\
243-
\Gamma&\vdash \beta:\U_{\ell'}&
244-
\bar\beta&\in U_{\scott{\ell'}}\\
245-
\Gamma&\vdash f:\alpha\to\beta&
246-
\bar f&:\bar\alpha\to\bar\beta\\
247-
\Gamma&\vdash h:\forall x\;y:\alpha.\;r\;x\;y\to f\;x=f\;y&
248-
\bar h&\in [\forall x,y\in\bar\alpha.\;(x,y)\in\overline{\bar r}\to \bar f(x)=\bar f(y)]\\
249-
\Gamma&\vdash a:\alpha&
250-
\bar a&\in \bar\alpha
251-
\end{align*}
252-
so that the statements on the right are the IH. We want to show that $\scott{\Gamma\vdash \lift_r\;\beta\;f\;h\;(\mk_r\;a)}_\gamma=\scott{\Gamma\vdash f\;a}_\gamma$, or $\scott{\Gamma\vdash \lift_r\;\beta\;f\;h}_\gamma([a]_{\sim})=\bar f(a)$; but this is by definition (we showed it is well defined given the assumptions on $\alpha,r,\beta,f,h$ already).
237+
\item Quotient iota. $\scott{\Gamma\vdash \lift_r\;\beta\;f\;h\;(\mk_r\;a)}_\gamma=\scott{\Gamma\vdash \lift_r\;\beta\;f\;h}_\gamma([\bar a]_{\sim})=\bar f(\bar a)$ by definition (we showed it is well defined given the assumptions on $\alpha,r,\beta,f,h$ already).
253238
\item $\pi_1$ iota. $\scott{\Gamma\vdash\pi_1(a,b)}_\gamma=\pi_1(\bar a,\bar b)=\bar a$.
254239
\item $\pi_2$ iota. $\scott{\Gamma\vdash\pi_2(a,b)}_\gamma=\pi_2(\bar a,\bar b)=\bar b$.
255240
\item $\inl$ iota. $\scott{\Gamma\vdash\rec_+\;a\;b\;(\inl x)}_\gamma=\scott{\Gamma\vdash\rec_+\;a\;b}_\gamma(\iota_1(\bar x))=\bar a(\bar x)=\scott{\Gamma\vdash a\;x}_\gamma$.

0 commit comments

Comments
 (0)