forked from alibaba/AliceMind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparam.py
232 lines (201 loc) · 12.1 KB
/
param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# coding=utf-8
# Copyleft 2019 project LXRT.
import argparse
import random
import logging
import numpy as np
import torch
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def get_optimizer(optim):
# Bind the optimizer
if optim == 'rms':
# print("Optimizer: Using RMSProp")
logger.info("Optimizer: Using RMSProp")
optimizer = torch.optim.RMSprop
elif optim == 'adam':
# print("Optimizer: Using Adam")
logger.info("Optimizer: Using Adam")
optimizer = torch.optim.Adam
elif optim == 'adamax':
# print("Optimizer: Using Adamax")
logger.info("Optimizer: Using Adamax")
optimizer = torch.optim.Adamax
elif optim == 'sgd':
# print("Optimizer: sgd")
logger.info("Optimizer: sgd")
optimizer = torch.optim.SGD
elif 'bert' in optim:
optimizer = 'bert' # The bert optimizer will be bind later.
else:
assert False, "Please add your optimizer %s in the list." % optim
return optimizer
def parse_args():
parser = argparse.ArgumentParser()
# Data Splits
parser.add_argument("--train", default='train')
parser.add_argument("--valid", default='valid')
parser.add_argument("--test", default=None)
# Training Hyper-parameters
parser.add_argument('--batchSize', dest='batch_size', type=int, default=256)
parser.add_argument('--test_batch_size', dest='test_batch_size', type=int, default=950)
parser.add_argument('--optim', default='bert')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--seed', type=int, default=9595, help='random seed')
parser.add_argument("--hidden_dropout", default=0.0, type=float)
parser.add_argument("--fix_language_bert",
default=False,
action='store_true',
help='whether fix language bert while fine-tuning.')
parser.add_argument("--one_stream",
default=False,
action='store_true',
help='whether to use the one_stream style.')
parser.add_argument("--safer_fp16",
default=False,
action='store_true',
help='whether use safer fp16.')
parser.add_argument("--debug_mode",
default=False,
action='store_true',
help='whether to debug mode')
# Debugging
parser.add_argument('--output', type=str, default='snap/test')
parser.add_argument("--fast", action='store_const', default=False, const=True)
parser.add_argument("--tiny", action='store_const', default=False, const=True)
parser.add_argument("--tqdm", action='store_const', default=False, const=True)
# Model Loading
parser.add_argument('--load', type=str, default=None,
help='Load the model (usually the fine-tuned model).')
parser.add_argument('--patial_load', type=str, default=None,
help='Load the patial model.')
parser.add_argument('--loadLXMERT', dest='load_lxmert', type=str, default=None,
help='Load the pre-trained LXMERT model.')
parser.add_argument('--loadLXMERTQA', dest='load_lxmert_qa', type=str, default=None,
help='Load the pre-trained LXMERT model with QA answer head.')
parser.add_argument("--fromScratch", dest='from_scratch', action='store_const', default=False, const=True,
help='If none of the --load, --loadLXMERT, --loadLXMERTQA is set, '
'the model would be trained from scratch. If --fromScratch is'
' not specified, the model would load BERT-pre-trained weights by'
' default. ')
parser.add_argument("--bert_model", default=None, type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument('--hidden_size', type=int, default=768)
parser.add_argument('--bert_fix_no_str', type=str, default=None,
help='fix the no-matching of str in model when training.')
parser.add_argument('--bert_fix_str', type=str, default=None,
help='fix the matching of str in model when training.')
# Optimization
parser.add_argument("--mceLoss", dest='mce_loss', action='store_const', default=False, const=True)
# LXRT Model Config
# Note: LXRT = L, X, R (three encoders), Transformer
parser.add_argument("--llayers", default=0, type=int, help='Number of Language layers')
parser.add_argument("--xlayers", default=12, type=int, help='Number of CROSS-modality layers.')
parser.add_argument("--rlayers", default=0, type=int, help='Number of object Relationship layers.')
parser.add_argument('--middle_layer', type=int, default=0, help='middle layer for match')
# LXMERT Pre-training Config
parser.add_argument("--taskMatched", dest='task_matched', action='store_const', default=False, const=True)
parser.add_argument("--taskMaskLM", dest='task_mask_lm', action='store_const', default=False, const=True)
parser.add_argument("--taskObjPredict", dest='task_obj_predict', action='store_const', default=False, const=True)
parser.add_argument("--taskQA", dest='task_qa', action='store_const', default=False, const=True)
parser.add_argument("--visualLosses", dest='visual_losses', default='obj,attr,feat', type=str)
parser.add_argument("--qaSets", dest='qa_sets', default=None, type=str)
parser.add_argument("--wordMaskRate", dest='word_mask_rate', default=0.15, type=float)
parser.add_argument("--objMaskRate", dest='obj_mask_rate', default=0.15, type=float)
# Training configuration
parser.add_argument("--multiGPU", action='store_const', default=False, const=True)
parser.add_argument("--num_workers", dest='num_workers', default=0, type=int)
parser.add_argument("--amp_type", default=None, type=str, help="whether to use mix precision, must in [O0, O1, O2, O3]")
parser.add_argument("--conditional_mask", dest='conditional_mask', action='store_const', default=False, const=True)
parser.add_argument("--only_mask_words", dest='only_mask_words', action='store_const', default=False, const=True)
parser.add_argument("--whole_word_mask", dest='whole_word_mask', action='store_const', default=False, const=True)
parser.add_argument("--image_wwm", dest='image_wwm', action='store_const', default=False, const=True)
parser.add_argument("--add_box_size", dest='add_box_size', action='store_const', default=False, const=True)
parser.add_argument("--use_struct_emb", dest='use_struct_emb', action='store_const', default=False, const=True)
parser.add_argument("--max_2d_position_embeddings", default=160, type=int, help='max struct position length')
parser.add_argument("--use_hdf5", dest='use_hdf5', action='store_const', default=False, const=True)
parser.add_argument("--use_npz", dest='use_npz', action='store_const', default=False, const=True)
parser.add_argument("--use_jpg", dest='use_jpg', action='store_const', default=False, const=True)
parser.add_argument("--image_hdf5_file", dest='image_hdf5_file', default='data/mscoco_imgfeat/train2014_obj36.tsv.token,data/mscoco_imgfeat/val2014_obj36.tsv.token', type=str)
parser.add_argument("--padding", dest='padding', action='store_const', default=False, const=True)
parser.add_argument("--with_score", dest='with_score', action='store_const', default=False, const=True)
parser.add_argument("--clip_norm", dest='clip_norm', default=5., type=float)
parser.add_argument("--merge_for_submit", dest='merge_for_submit', action='store_const', default=False, const=True)
parser.add_argument('--merge_dir', type=str, default='snap/vqa/test_vqa_ensemble_predict_best_submission')
parser.add_argument('--max_objects', type=int, default=100)
parser.add_argument("--use_multi_view", dest='use_multi_view', action='store_const', default=False, const=True)
parser.add_argument("--from_config_file",
default=False,
action='store_true',
help='whether initial config from config file.')
parser.add_argument("--bert_config_file", default=None, type=str,
help="The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
parser.add_argument('--single_image_file', type=str, default=None,
help='single image hdf5 file for pre-training image modality.')
parser.add_argument("--revise_match_task",
default=False,
action='store_true',
help='whether to revise match task.')
parser.add_argument("--prefetch",
default=False,
action='store_true',
help='whether to prefetch the data.')
parser.add_argument("--paired_attn",
default=False,
action='store_true',
help='whether to use paired attn for NLVR task')
parser.add_argument("--linear_nlvr",
default=False,
action='store_true',
help='whether to only use linear nlvr head')
parser.add_argument("--only_use_relevant_dets",
default=False,
action='store_true',
help='whether to only_use_relevant_dets')
parser.add_argument("--max_seq_length", default=40, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded. Must match data generation.")
parser.add_argument("--nlvr_max_seq_length", default=20, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded. Must match data generation.")
parser.add_argument("--concat_attention",
default=False,
action='store_true',
help='whether to use concat attention')
parser.add_argument("--no_qa_data",
default=False,
action='store_true',
help='whether to remove qa data and task.')
parser.add_argument("--use_vit",
default=False,
action='store_true',
help='vit mode.')
parser.add_argument('--image_crop_size_h', type=int, default=448)
parser.add_argument('--image_crop_size_w', type=int, default=448)
parser.add_argument("--bin_h_num", type=int, default=8)
parser.add_argument("--bin_w_num", type=int, default=8)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
# distributed parameters
parser.add_argument("--local_rank", type=int)
parser.add_argument('--total_instances', type=int, default=8967075)
parser.add_argument("--read_local_data",
default=False,
action='store_true',
help='whether to read image from local disk.')
# Parse the arguments.
args = parser.parse_args()
# Bind optimizer class.
args.optimizer = get_optimizer(args.optim)
# Set seeds
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
return args
args = parse_args()