-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdriver_util.py
124 lines (111 loc) · 4.18 KB
/
driver_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 1 10:27:58 2016
@author: LordPhillips
"""
import os
import datetime
from utils import constants as c
from utils import vehicleclass as v
from utils import frame_util as futil
'''The ngsim datetime is wrong. this converts.
example input: 1118936700200
example conversion: "1118936700.200"
example output: datetime.datetime.fromtimestamp(1118936700.200)'''
def convertNGSIMtimestampToDateTime(timestamp):
if not len(str(timestamp)) == len("1118936700200"):
print("Error in converting timestamp, original lengths don't match")
return None
string = str(timestamp)
conversion = string[:-3] + "." + string[-3:]
return datetime.datetime.fromtimestamp(float(conversion))
'''Helper to isolate deciding if a situation is interesting'''
#broken down so easy to add more cases
def inInterestingScenario(vehicle):
if vehicle.getSpaceHeadway() > 10:
return False
if vehicle.getVx() < 5:
return False
return True
'''keeps track of a dictionary of interesting frameIDs and position ranges'''
def find_interesting_parts(data):
interesting_parts = {}
for frameid in range(data.getFirstFrame(), data.getNumFrames()+1):
frame = data.getFrame(frameid)
interestingVehiclesInFrame = []
for vid in frame.keys():
veh = v.vehicle(frame[vid], data.getCompressed())
if inInterestingScenario(veh):
interestingVehiclesInFrame.append(vid)
interesting_parts[frameid]=interestingVehiclesInFrame
return interesting_parts
def test_goal_predictions(data):
cur_frame = 0
max_frame = data.getNumFrames()
predictions = {}
while cur_frame <= max_frame:
sim_step(data, cur_frame)
for agent in agents:
if not agent.ignore:
goal = agent.predict_goal #not right
predictions[agent].append(goal)
cur_frame += 1
evaluate_pred_results(predictions, actuals)
''' essentially 'loads' scenario for current frame'''
def sim_step(data, frame):
dict_of_cars = data.get_dict(frame)
agents = range(1,data.getMaxVID())
for agent in agents: #Here agent.id is the vehicle id
if agent in dict_of_cars:
agent.ignore = False #Indicates agent is not in frame
#(use this if just having all agents stored)
agent.vel.x = dict_of_cars(agent.id).vel.x
agent.vel.y = dict_of_cars(agent.id).vel.y
agent.pos.x = dict_of_cars(agent.id).pos.x
agent.pos.y = dict_of_cars(agent.id).pos.y
else:
agent.ignore = True
def evaluate_pred_results(pred, act):
return pred - act
def visualize(dataobject):
futil.AnimateData(dataobject)
#finds the path to the file in RESOURCES that matches
def findPathForFile(filename):
for subdir, dirs, files in os.walk(c.PATH_TO_RESOURCES):
for file in files:
filepath = subdir + os.sep + file
if not filepath.endswith(".txt"):
continue
Thisfilename = os.path.basename(filepath)
if filename == Thisfilename:
return filepath
print("No matching file in RESOURCES")
return None
#assumes filename starts with 'driver_compr_'
def findFeaturePath(filename):
featurefile = 'FEATURES_' + filename[len('driv_compr_'):]
print(featurefile)
return findPathForFile(featurefile)
def printConstraints(maxa, mina, maxv, minv):
print("Constraints:")
print("Max Acceleration = ", maxa)
print("Min Acceleration = ", mina)
print("Max Velocity = ", maxv)
print("Min Velocity = ", minv)
def findPrintAvg(frameDict, isCompressed):
print("Finding averages")
sumAx = 0
sumAy = 0
sumVx = 0
sumVy = 0
n = 0
for frame in frameDict.keys():
for vid in frameDict[frame].keys():
veh = v.vehicle(frameDict[frame][vid], isCompressed)
sumAx = sumAx + abs(veh.getAx())
sumAy = sumAy + abs(veh.getAy())
sumVx = sumVx + abs(veh.getVx())
sumVy = sumVy + abs(veh.getVy())
n = n + 1
avg = [sumAx/n, sumAy/n, sumVx/n, sumVy/n]
print(avg)