Skip to content

Latest commit

 

History

History
199 lines (163 loc) · 5.88 KB

3d-surface-plots.md

File metadata and controls

199 lines (163 loc) · 5.88 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.1
1.1.1
display_name language name
Python 3
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.6.7
description display_as language layout name order page_type permalink redirect_from thumbnail
How to make 3D-surface plots in Python
3d_charts
python
base
3D Surface Plots
3
example_index
python/3d-surface-plots/
python/3d-surface-coloring/
thumbnail/3d-surface.jpg

Topographical 3D Surface Plot

import plotly.graph_objects as go

import pandas as pd

# Read data from a csv
z_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv')

fig = go.Figure(data=[go.Surface(z=z_data.values)])

fig.update_layout(title='Mt Bruno Elevation', autosize=False,
                  width=500, height=500,
                  margin=dict(l=65, r=50, b=65, t=90))

fig.show()

Passing x and y data to 3D Surface Plot

If you do not specify x and y coordinates, integer indices are used for the x and y axis. You can also pass x and y values to go.Surface.

import plotly.graph_objects as go
import pandas as pd
import numpy as np
# Read data from a csv
z_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv')
z = z_data.values
sh_0, sh_1 = z.shape
x, y = np.linspace(0, 1, sh_0), np.linspace(0, 1, sh_1)
fig = go.Figure(data=[go.Surface(z=z, x=x, y=y)])
fig.update_layout(title='Mt Bruno Elevation', autosize=False,
                  width=500, height=500,
                  margin=dict(l=65, r=50, b=65, t=90))
fig.show()

Surface Plot With Contours

Display and customize contour data for each axis using the contours attribute (reference).

import plotly.graph_objects as go

import pandas as pd

# Read data from a csv
z_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv')

fig = go.Figure(data=[go.Surface(z=z_data.values)])
fig.update_traces(contours_z=dict(show=True, usecolormap=True,
                                  highlightcolor="limegreen", project_z=True))
fig.update_layout(title='Mt Bruno Elevation', autosize=False,
                  scene_camera_eye=dict(x=1.87, y=0.88, z=-0.64),
                  width=500, height=500,
                  margin=dict(l=65, r=50, b=65, t=90)
)

fig.show()

Configure Surface Contour Levels

This example shows how to slice the surface graph on the desired position for each of x, y and z axis. contours.x.start sets the starting contour level value, end sets the end of it, and size sets the step between each contour level.

import plotly.graph_objects as go

fig = go.Figure(go.Surface(
    contours = {
        "x": {"show": True, "start": 1.5, "end": 2, "size": 0.04, "color":"white"},
        "z": {"show": True, "start": 0.5, "end": 0.8, "size": 0.05}
    },
    x = [1,2,3,4,5],
    y = [1,2,3,4,5],
    z = [
        [0, 1, 0, 1, 0],
        [1, 0, 1, 0, 1],
        [0, 1, 0, 1, 0],
        [1, 0, 1, 0, 1],
        [0, 1, 0, 1, 0]
    ]))
fig.update_layout(
        scene = {
            "xaxis": {"nticks": 20},
            "zaxis": {"nticks": 4},
            'camera_eye': {"x": 0, "y": -1, "z": 0.5},
            "aspectratio": {"x": 1, "y": 1, "z": 0.2}
        })
fig.show()

Multiple 3D Surface Plots

import plotly.graph_objects as go
import numpy as np

z1 = np.array([
    [8.83,8.89,8.81,8.87,8.9,8.87],
    [8.89,8.94,8.85,8.94,8.96,8.92],
    [8.84,8.9,8.82,8.92,8.93,8.91],
    [8.79,8.85,8.79,8.9,8.94,8.92],
    [8.79,8.88,8.81,8.9,8.95,8.92],
    [8.8,8.82,8.78,8.91,8.94,8.92],
    [8.75,8.78,8.77,8.91,8.95,8.92],
    [8.8,8.8,8.77,8.91,8.95,8.94],
    [8.74,8.81,8.76,8.93,8.98,8.99],
    [8.89,8.99,8.92,9.1,9.13,9.11],
    [8.97,8.97,8.91,9.09,9.11,9.11],
    [9.04,9.08,9.05,9.25,9.28,9.27],
    [9,9.01,9,9.2,9.23,9.2],
    [8.99,8.99,8.98,9.18,9.2,9.19],
    [8.93,8.97,8.97,9.18,9.2,9.18]
])

z2 = z1 + 1
z3 = z1 - 1

fig = go.Figure(data=[
    go.Surface(z=z1),
    go.Surface(z=z2, showscale=False, opacity=0.9),
    go.Surface(z=z3, showscale=False, opacity=0.9)

])

fig.show()

Setting the Surface Color

You can use the surfacecolor attribute to define the color of the surface of your figure. In this example, the surface color represents the distance from the origin, rather than the default, which is the z value.

import plotly.graph_objects as go
from plotly.subplots import make_subplots

# Equation of ring cyclide
# see https://en.wikipedia.org/wiki/Dupin_cyclide
import numpy as np
a, b, d = 1.32, 1., 0.8
c = a**2 - b**2
u, v = np.mgrid[0:2*np.pi:100j, 0:2*np.pi:100j]
x = (d * (c - a * np.cos(u) * np.cos(v)) + b**2 * np.cos(u)) / (a - c * np.cos(u) * np.cos(v))
y = b * np.sin(u) * (a - d*np.cos(v)) / (a - c * np.cos(u) * np.cos(v))
z = b * np.sin(v) * (c*np.cos(u) - d) / (a - c * np.cos(u) * np.cos(v))

fig = make_subplots(rows=1, cols=2,
                    specs=[[{'is_3d': True}, {'is_3d': True}]],
                    subplot_titles=['Color corresponds to z', 'Color corresponds to distance to origin'],
                    )

fig.add_trace(go.Surface(x=x, y=y, z=z, colorbar_x=-0.07), 1, 1)
fig.add_trace(go.Surface(x=x, y=y, z=z, surfacecolor=x**2 + y**2 + z**2), 1, 2)
fig.update_layout(title_text="Ring cyclide")
fig.show()

Reference

See https://plotly.com/python/reference/surface/ for more information!