Skip to content

Latest commit

 

History

History
275 lines (235 loc) · 6.3 KB

aggregations.md

File metadata and controls

275 lines (235 loc) · 6.3 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.1
1.1.7
display_name language name
Python 3
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.6.5
description display_as language layout name order page_type permalink thumbnail
How to use aggregates in Python with Plotly.
transforms
python
base
Aggregations
3
example_index
python/aggregations/
thumbnail/aggregations.jpg

Note transforms are deprecated in plotly v5 and will be removed in a future version.

Introduction

Aggregates are a type of transform that can be applied to values in a given expression. Available aggregations are:

Function Description
count Returns the quantity of items for each group.
sum Returns the summation of all numeric values.
avg Returns the average of all numeric values.
median Returns the median of all numeric values.
mode Returns the mode of all numeric values.
rms Returns the rms of all numeric values.
stddev Returns the standard deviation of all numeric values.
min Returns the minimum numeric value for each group.
max Returns the maximum numeric value for each group.
first Returns the first numeric value for each group.
last Returns the last numeric value for each group.

Basic Example

import plotly.io as pio

subject = ['Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly']
score = [1,6,2,8,2,9,4,5,1,5,2,8]

data = [dict(
  type = 'scatter',
  x = subject,
  y = score,
  mode = 'markers',
  transforms = [dict(
    type = 'aggregate',
    groups = subject,
    aggregations = [dict(
        target = 'y', func = 'sum', enabled = True),
    ]
  )]
)]

fig_dict = dict(data=data)

pio.show(fig_dict, validate=False)

Aggregate Functions

import plotly.io as pio

subject = ['Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly']
score = [1,6,2,8,2,9,4,5,1,5,2,8]

aggs = ["count","sum","avg","median","mode","rms","stddev","min","max","first","last"]

agg = []
agg_func = []
for i in range(0, len(aggs)):
    agg = dict(
        args=['transforms[0].aggregations[0].func', aggs[i]],
        label=aggs[i],
        method='restyle'
    )
    agg_func.append(agg)


data = [dict(
  type = 'scatter',
  x = subject,
  y = score,
  mode = 'markers',
  transforms = [dict(
    type = 'aggregate',
    groups = subject,
    aggregations = [dict(
        target = 'y', func = 'sum', enabled = True)
    ]
  )]
)]

layout = dict(
  title = '<b>Plotly Aggregations</b><br>use dropdown to change aggregation',
  xaxis = dict(title = 'Subject'),
  yaxis = dict(title = 'Score', range = [0,22]),
  updatemenus = [dict(
        x = 0.85,
        y = 1.15,
        xref = 'paper',
        yref = 'paper',
        yanchor = 'top',
        active = 1,
        showactive = False,
        buttons = agg_func
  )]
)

fig_dict = dict(data=data, layout=layout)

pio.show(fig_dict, validate=False)

Histogram Binning

import plotly.io as pio

import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/US-shooting-incidents.csv")

data = [dict(
  x = df['date'],
  autobinx = False,
  autobiny = True,
  marker = dict(color = 'rgb(68, 68, 68)'),
  name = 'date',
  type = 'histogram',
  xbins = dict(
    end = '2016-12-31 12:00',
    size = 'M1',
    start = '1983-12-31 12:00'
  )
)]

layout = dict(
  paper_bgcolor = 'rgb(240, 240, 240)',
  plot_bgcolor = 'rgb(240, 240, 240)',
  title = '<b>Shooting Incidents</b>',
  xaxis = dict(
    title = '',
    type = 'date'
  ),
  yaxis = dict(
    title = 'Shootings Incidents',
    type = 'linear'
  ),
  updatemenus = [dict(
        x = 0.1,
        y = 1.15,
        xref = 'paper',
        yref = 'paper',
        yanchor = 'top',
        active = 1,
        showactive = True,
        buttons = [
        dict(
            args = ['xbins.size', 'D1'],
            label = 'Day',
            method = 'restyle',
        ), dict(
            args = ['xbins.size', 'M1'],
            label = 'Month',
            method = 'restyle',
        ), dict(
            args = ['xbins.size', 'M3'],
            label = 'Quarter',
            method = 'restyle',
        ), dict(
            args = ['xbins.size', 'M6'],
            label = 'Half Year',
            method = 'restyle',
        ), dict(
            args = ['xbins.size', 'M12'],
            label = 'Year',
            method = 'restyle',
        )]
  )]
)

fig_dict = dict(data=data, layout=layout)

pio.show(fig_dict, validate=False)

Mapping with Aggregates

import plotly.io as pio

import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/bcdunbar/datasets/master/worldhappiness.csv")

aggs = ["count","sum","avg","median","mode","rms","stddev","min","max","first","last"]

agg = []
agg_func = []
for i in range(0, len(aggs)):
    agg = dict(
        args=['transforms[0].aggregations[0].func', aggs[i]],
        label=aggs[i],
        method='restyle'
    )
    agg_func.append(agg)

data = [dict(
  type = 'choropleth',
  locationmode = 'country names',
  locations = df['Country'],
  z = df['HappinessScore'],
  autocolorscale = False,
  colorscale = 'Portland',
  reversescale = True,
  transforms = [dict(
    type = 'aggregate',
    groups = df['Country'],
    aggregations = [dict(
        target = 'z', func = 'sum', enabled = True)
    ]
  )]
)]

layout = dict(
  title = '<b>Plotly Aggregations</b><br>use dropdown to change aggregation',
  xaxis = dict(title = 'Subject'),
  yaxis = dict(title = 'Score', range = [0,22]),
  height = 600,
  width = 900,
  updatemenus = [dict(
        x = 0.85,
        y = 1.15,
        xref = 'paper',
        yref = 'paper',
        yanchor = 'top',
        active = 1,
        showactive = False,
        buttons = agg_func
  )]
)

fig_dict = dict(data=data, layout=layout)

pio.show(fig_dict, validate=False)

Reference

See https://plotly.com/python/reference/ for more information and chart attribute options!