Skip to content

Latest commit

 

History

History
76 lines (63 loc) · 1.98 KB

bio-manhattanplot.md

File metadata and controls

76 lines (63 loc) · 1.98 KB
jupyter
celltoolbar jupytext kernelspec language_info plotly
Tags
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.3
1.13.0
display_name language name
Python 3 (ipykernel)
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.9.7
display_as language layout name order page_type permalink thumbnail
bio
python
base
Manhattan Plot
1
u-guide
python/manhattan-plot/
thumbnail/manhattan_plot.png

Manhattan Plot

ManhattanPlot allows you to visualize genome-wide association studies (GWAS) efficiently. Using WebGL under the hood, you can interactively explore overviews of massive datasets comprising hundreds of thousands of points at once, or take a closer look at a small subset of your data. Hover data and click data are accessible from within the Dash app.

import pandas as pd
import dash_bio


df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv')


dash_bio.ManhattanPlot(
    dataframe=df,
)

Highlighted points color, and colors of the suggestive line and the genome-wide line

Change the color of the points that are considered significant.

import pandas as pd
import dash_bio


df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv')

dash_bio.ManhattanPlot(
    dataframe=df,
    highlight_color='#00FFAA',
    suggestiveline_color='#AA00AA',
    genomewideline_color='#AA5500'
)

ManhattanPlot with Dash

from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'bio-manhattanplot', width='100%', height=1200)