jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
ManhattanPlot allows you to visualize genome-wide association studies (GWAS) efficiently. Using WebGL under the hood, you can interactively explore overviews of massive datasets comprising hundreds of thousands of points at once, or take a closer look at a small subset of your data. Hover data and click data are accessible from within the Dash app.
import pandas as pd
import dash_bio
df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv')
dash_bio.ManhattanPlot(
dataframe=df,
)
Change the color of the points that are considered significant.
import pandas as pd
import dash_bio
df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv')
dash_bio.ManhattanPlot(
dataframe=df,
highlight_color='#00FFAA',
suggestiveline_color='#AA00AA',
genomewideline_color='#AA5500'
)
from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'bio-manhattanplot', width='100%', height=1200)