jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
A dendrogram is a diagram representing a tree. The figure factory called create_dendrogram
performs hierarchical clustering on data and represents the resulting tree. Values on the tree depth axis correspond to distances between clusters.
Dendrogram plots are commonly used in computational biology to show the clustering of genes or samples, sometimes in the margin of heatmaps.
import plotly.figure_factory as ff
import numpy as np
np.random.seed(1)
X = np.random.rand(15, 12) # 15 samples, with 12 dimensions each
fig = ff.create_dendrogram(X)
fig.update_layout(width=800, height=500)
fig.show()
import plotly.figure_factory as ff
import numpy as np
X = np.random.rand(15, 10) # 15 samples, with 10 dimensions each
fig = ff.create_dendrogram(X, color_threshold=1.5)
fig.update_layout(width=800, height=500)
fig.show()
import plotly.figure_factory as ff
import numpy as np
X = np.random.rand(10, 12)
names = ['Jack', 'Oxana', 'John', 'Chelsea', 'Mark', 'Alice', 'Charlie', 'Rob', 'Lisa', 'Lily']
fig = ff.create_dendrogram(X, orientation='left', labels=names)
fig.update_layout(width=800, height=800)
fig.show()
See also the Dash Bio demo.
import plotly.graph_objects as go
import plotly.figure_factory as ff
import numpy as np
from scipy.spatial.distance import pdist, squareform
# get data
data = np.genfromtxt("http://files.figshare.com/2133304/ExpRawData_E_TABM_84_A_AFFY_44.tab",
names=True,usecols=tuple(range(1,30)),dtype=float, delimiter="\t")
data_array = data.view((float, len(data.dtype.names)))
data_array = data_array.transpose()
labels = data.dtype.names
# Initialize figure by creating upper dendrogram
fig = ff.create_dendrogram(data_array, orientation='bottom', labels=labels)
for i in range(len(fig['data'])):
fig['data'][i]['yaxis'] = 'y2'
# Create Side Dendrogram
dendro_side = ff.create_dendrogram(data_array, orientation='right')
for i in range(len(dendro_side['data'])):
dendro_side['data'][i]['xaxis'] = 'x2'
# Add Side Dendrogram Data to Figure
for data in dendro_side['data']:
fig.add_trace(data)
# Create Heatmap
dendro_leaves = dendro_side['layout']['yaxis']['ticktext']
dendro_leaves = list(map(int, dendro_leaves))
data_dist = pdist(data_array)
heat_data = squareform(data_dist)
heat_data = heat_data[dendro_leaves,:]
heat_data = heat_data[:,dendro_leaves]
heatmap = [
go.Heatmap(
x = dendro_leaves,
y = dendro_leaves,
z = heat_data,
colorscale = 'Blues'
)
]
heatmap[0]['x'] = fig['layout']['xaxis']['tickvals']
heatmap[0]['y'] = dendro_side['layout']['yaxis']['tickvals']
# Add Heatmap Data to Figure
for data in heatmap:
fig.add_trace(data)
# Edit Layout
fig.update_layout({'width':800, 'height':800,
'showlegend':False, 'hovermode': 'closest',
})
# Edit xaxis
fig.update_layout(xaxis={'domain': [.15, 1],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'ticks':""})
# Edit xaxis2
fig.update_layout(xaxis2={'domain': [0, .15],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks':""})
# Edit yaxis
fig.update_layout(yaxis={'domain': [0, .85],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks': ""
})
# Edit yaxis2
fig.update_layout(yaxis2={'domain':[.825, .975],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks':""})
# Plot!
fig.show()
For more info on ff.create_dendrogram()
, see the full function reference