jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The updatemenu method determines which plotly.js function will be used to modify the chart. There are 4 possible methods:
"restyle"
: modify data or data attributes"relayout"
: modify layout attributes"update"
: modify data and layout attributes"animate"
: start or pause an animation
The "restyle"
method should be used when modifying the data and data attributes of the graph.
This example demonstrates how to update a single data attribute: chart type
with the "restyle"
method.
import plotly.graph_objects as go
import pandas as pd
# load dataset
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv")
# create figure
fig = go.Figure()
# Add surface trace
fig.add_trace(go.Surface(z=df.values.tolist(), colorscale="Viridis"))
# Update plot sizing
fig.update_layout(
width=800,
height=900,
autosize=False,
margin=dict(t=0, b=0, l=0, r=0),
template="plotly_white",
)
# Update 3D scene options
fig.update_scenes(
aspectratio=dict(x=1, y=1, z=0.7),
aspectmode="manual"
)
# Add dropdown
fig.update_layout(
updatemenus=[
dict(
buttons=list([
dict(
args=["type", "surface"],
label="3D Surface",
method="restyle"
),
dict(
args=["type", "heatmap"],
label="Heatmap",
method="restyle"
)
]),
direction="down",
pad={"r": 10, "t": 10},
showactive=True,
x=0.1,
xanchor="left",
y=1.1,
yanchor="top"
),
]
)
# Add annotation
fig.update_layout(
annotations=[
dict(text="Trace type:", showarrow=False,
x=0, y=1.085, yref="paper", align="left")
]
)
fig.show()
This example demonstrates how to update several data attributes: colorscale, colorscale direction, and line display with the "restyle" method.
import plotly.graph_objects as go
import pandas as pd
# load dataset
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv")
# Create figure
fig = go.Figure()
# Add surface trace
fig.add_trace(go.Heatmap(z=df.values.tolist(), colorscale="Viridis"))
# Update plot sizing
fig.update_layout(
width=800,
height=900,
autosize=False,
margin=dict(t=100, b=0, l=0, r=0),
)
# Update 3D scene options
fig.update_scenes(
aspectratio=dict(x=1, y=1, z=0.7),
aspectmode="manual"
)
# Add dropdowns
button_layer_1_height = 1.08
fig.update_layout(
updatemenus=[
dict(
buttons=list([
dict(
args=["colorscale", "Viridis"],
label="Viridis",
method="restyle"
),
dict(
args=["colorscale", "Cividis"],
label="Cividis",
method="restyle"
),
dict(
args=["colorscale", "Blues"],
label="Blues",
method="restyle"
),
dict(
args=["colorscale", "Greens"],
label="Greens",
method="restyle"
),
]),
direction="down",
pad={"r": 10, "t": 10},
showactive=True,
x=0.1,
xanchor="left",
y=button_layer_1_height,
yanchor="top"
),
dict(
buttons=list([
dict(
args=["reversescale", False],
label="False",
method="restyle"
),
dict(
args=["reversescale", True],
label="True",
method="restyle"
)
]),
direction="down",
pad={"r": 10, "t": 10},
showactive=True,
x=0.37,
xanchor="left",
y=button_layer_1_height,
yanchor="top"
),
dict(
buttons=list([
dict(
args=[{"contours.showlines": False, "type": "contour"}],
label="Hide lines",
method="restyle"
),
dict(
args=[{"contours.showlines": True, "type": "contour"}],
label="Show lines",
method="restyle"
),
]),
direction="down",
pad={"r": 10, "t": 10},
showactive=True,
x=0.58,
xanchor="left",
y=button_layer_1_height,
yanchor="top"
),
]
)
fig.update_layout(
annotations=[
dict(text="colorscale", x=0, xref="paper", y=1.06, yref="paper",
align="left", showarrow=False),
dict(text="Reverse<br>Colorscale", x=0.25, xref="paper", y=1.07,
yref="paper", showarrow=False),
dict(text="Lines", x=0.54, xref="paper", y=1.06, yref="paper",
showarrow=False)
])
fig.show()
The "relayout"
method should be used when modifying the layout attributes of the graph.
This example demonstrates how to update a layout attribute: chart type
with the "relayout"
method.
import plotly.graph_objects as go
# Generate dataset
import numpy as np
np.random.seed(1)
x0 = np.random.normal(2, 0.4, 400)
y0 = np.random.normal(2, 0.4, 400)
x1 = np.random.normal(3, 0.6, 600)
y1 = np.random.normal(6, 0.4, 400)
x2 = np.random.normal(4, 0.2, 200)
y2 = np.random.normal(4, 0.4, 200)
# Create figure
fig = go.Figure()
# Add traces
fig.add_trace(
go.Scatter(
x=x0,
y=y0,
mode="markers",
marker=dict(color="DarkOrange")
)
)
fig.add_trace(
go.Scatter(
x=x1,
y=y1,
mode="markers",
marker=dict(color="Crimson")
)
)
fig.add_trace(
go.Scatter(
x=x2,
y=y2,
mode="markers",
marker=dict(color="RebeccaPurple")
)
)
# Add buttons that add shapes
cluster0 = [dict(type="circle",
xref="x", yref="y",
x0=min(x0), y0=min(y0),
x1=max(x0), y1=max(y0),
line=dict(color="DarkOrange"))]
cluster1 = [dict(type="circle",
xref="x", yref="y",
x0=min(x1), y0=min(y1),
x1=max(x1), y1=max(y1),
line=dict(color="Crimson"))]
cluster2 = [dict(type="circle",
xref="x", yref="y",
x0=min(x2), y0=min(y2),
x1=max(x2), y1=max(y2),
line=dict(color="RebeccaPurple"))]
fig.update_layout(
updatemenus=[
dict(buttons=list([
dict(label="None",
method="relayout",
args=["shapes", []]),
dict(label="Cluster 0",
method="relayout",
args=["shapes", cluster0]),
dict(label="Cluster 1",
method="relayout",
args=["shapes", cluster1]),
dict(label="Cluster 2",
method="relayout",
args=["shapes", cluster2]),
dict(label="All",
method="relayout",
args=["shapes", cluster0 + cluster1 + cluster2])
]),
)
]
)
# Update remaining layout properties
fig.update_layout(
title_text="Highlight Clusters",
showlegend=False,
)
fig.show()
The "update"
method should be used when modifying the data and layout sections of the graph.
This example demonstrates how to update which traces are displayed while simultaneously updating layout attributes such as the chart title and annotations.
import plotly.graph_objects as go
import pandas as pd
# Load dataset
df = pd.read_csv(
"https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")
df.columns = [col.replace("AAPL.", "") for col in df.columns]
# Initialize figure
fig = go.Figure()
# Add Traces
fig.add_trace(
go.Scatter(x=list(df.Date),
y=list(df.High),
name="High",
line=dict(color="#33CFA5")))
fig.add_trace(
go.Scatter(x=list(df.Date),
y=[df.High.mean()] * len(df.index),
name="High Average",
visible=False,
line=dict(color="#33CFA5", dash="dash")))
fig.add_trace(
go.Scatter(x=list(df.Date),
y=list(df.Low),
name="Low",
line=dict(color="#F06A6A")))
fig.add_trace(
go.Scatter(x=list(df.Date),
y=[df.Low.mean()] * len(df.index),
name="Low Average",
visible=False,
line=dict(color="#F06A6A", dash="dash")))
# Add Annotations and Buttons
high_annotations = [dict(x="2016-03-01",
y=df.High.mean(),
xref="x", yref="y",
text="High Average:<br> %.3f" % df.High.mean(),
ax=0, ay=-40),
dict(x=df.Date[df.High.idxmax()],
y=df.High.max(),
xref="x", yref="y",
text="High Max:<br> %.3f" % df.High.max(),
ax=-40, ay=-40)]
low_annotations = [dict(x="2015-05-01",
y=df.Low.mean(),
xref="x", yref="y",
text="Low Average:<br> %.3f" % df.Low.mean(),
ax=0, ay=40),
dict(x=df.Date[df.High.idxmin()],
y=df.Low.min(),
xref="x", yref="y",
text="Low Min:<br> %.3f" % df.Low.min(),
ax=0, ay=40)]
fig.update_layout(
updatemenus=[
dict(
active=0,
buttons=list([
dict(label="None",
method="update",
args=[{"visible": [True, False, True, False]},
{"title": "Yahoo",
"annotations": []}]),
dict(label="High",
method="update",
args=[{"visible": [True, True, False, False]},
{"title": "Yahoo High",
"annotations": high_annotations}]),
dict(label="Low",
method="update",
args=[{"visible": [False, False, True, True]},
{"title": "Yahoo Low",
"annotations": low_annotations}]),
dict(label="Both",
method="update",
args=[{"visible": [True, True, True, True]},
{"title": "Yahoo",
"annotations": high_annotations + low_annotations}]),
]),
)
])
# Set title
fig.update_layout(title_text="Yahoo")
fig.show()
See https://plotly.com/python/reference/layout/updatemenus/ for more information about updatemenu
dropdowns.