jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
In statistics, a histogram is representation of the distribution of numerical data, where the data are binned and the count for each bin is represented. More generally, in Plotly a histogram is an aggregated bar chart, with several possible aggregation functions (e.g. sum, average, count...) which can be used to visualize data on categorical and date axes as well as linear axes.
Alternatives to histogram plots for visualizing distributions include violin plots, box plots, ECDF plots and strip charts.
If you're looking instead for bar charts, i.e. representing raw, unaggregated data with rectangular bar, go to the Bar Chart tutorial.
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill")
fig.show()
import plotly.express as px
df = px.data.tips()
# Here we use a column with categorical data
fig = px.histogram(df, x="day")
fig.show()
By default, the number of bins is chosen so that this number is comparable to the typical number of samples in a bin. This number can be customized, as well as the range of values.
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", nbins=20)
fig.show()
Plotly histograms will automatically bin date data in addition to numerical data:
import plotly.express as px
df = px.data.stocks()
fig = px.histogram(df, x="date")
fig.update_layout(bargap=0.2)
fig.show()
Plotly histograms will automatically bin numerical or date data but can also be used on raw categorical data, as in the following example, where the X-axis value is the categorical "day" variable:
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="day", category_orders=dict(day=["Thur", "Fri", "Sat", "Sun"]))
fig.show()
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'histograms', width='100%', height=1200)
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
JavaScript calculates the y-axis (count) values on the fly in the browser, so it's not accessible in the fig
. You can manually calculate it using np.histogram
.
import plotly.express as px
import numpy as np
df = px.data.tips()
# create the bins
counts, bins = np.histogram(df.total_bill, bins=range(0, 60, 5))
bins = 0.5 * (bins[:-1] + bins[1:])
fig = px.bar(x=bins, y=counts, labels={'x':'total_bill', 'y':'count'})
fig.show()
The default mode is to represent the count of samples in each bin. With the histnorm
argument, it is also possible to represent the percentage or fraction of samples in each bin (histnorm='percent'
or probability
), or a density histogram (the sum of all bar areas equals the total number of sample points, density
), or a probability density histogram (the sum of all bar areas equals 1, probability density
).
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", histnorm='probability density')
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill",
title='Histogram of bills',
labels={'total_bill':'total bill'}, # can specify one label per df column
opacity=0.8,
log_y=True, # represent bars with log scale
color_discrete_sequence=['indianred'] # color of histogram bars
)
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", color="sex")
fig.show()
For each bin of x
, one can compute a function of data using histfunc
. The argument of histfunc
is the dataframe column given as the y
argument. Below the plot shows that the average tip increases with the total bill.
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", histfunc='avg')
fig.show()
The default histfunc
is sum
if y
is given, and works with categorical as well as binned numeric data on the x
axis:
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="day", y="total_bill", category_orders=dict(day=["Thur", "Fri", "Sat", "Sun"]))
fig.show()
New in v5.0
Histograms afford the use of patterns (also known as hatching or texture) in addition to color:
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="sex", y="total_bill", color="sex", pattern_shape="smoker")
fig.show()
With the marginal
keyword, a marginal is drawn alongside the histogram, visualizing the distribution. See the distplot page for more examples of combined statistical representations.
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", color="sex", marginal="rug", # can be `box`, `violin`
hover_data=df.columns)
fig.show()
New in v5.5
You can add text to histogram bars using the text_auto
argument. Setting it to True
will display the values on the bars, and setting it to a d3-format
formatting string will control the output format.
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", histfunc="avg", nbins=8, text_auto=True)
fig.show()
If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Histogram
class from plotly.graph_objects
. All of the available histogram options are described in the histogram section of the reference page: https://plotly.com/python/reference#histogram.
import plotly.graph_objects as go
import numpy as np
np.random.seed(1)
x = np.random.randn(500)
fig = go.Figure(data=[go.Histogram(x=x)])
fig.show()
import plotly.graph_objects as go
import numpy as np
x = np.random.randn(500)
fig = go.Figure(data=[go.Histogram(x=x, histnorm='probability')])
fig.show()
import plotly.graph_objects as go
import numpy as np
y = np.random.randn(500)
# Use `y` argument instead of `x` for horizontal histogram
fig = go.Figure(data=[go.Histogram(y=y)])
fig.show()
import plotly.graph_objects as go
import numpy as np
x0 = np.random.randn(500)
# Add 1 to shift the mean of the Gaussian distribution
x1 = np.random.randn(500) + 1
fig = go.Figure()
fig.add_trace(go.Histogram(x=x0))
fig.add_trace(go.Histogram(x=x1))
# Overlay both histograms
fig.update_layout(barmode='overlay')
# Reduce opacity to see both histograms
fig.update_traces(opacity=0.75)
fig.show()
import plotly.graph_objects as go
import numpy as np
x0 = np.random.randn(2000)
x1 = np.random.randn(2000) + 1
fig = go.Figure()
fig.add_trace(go.Histogram(x=x0))
fig.add_trace(go.Histogram(x=x1))
# The two histograms are drawn on top of another
fig.update_layout(barmode='stack')
fig.show()
import plotly.graph_objects as go
import numpy as np
x0 = np.random.randn(500)
x1 = np.random.randn(500) + 1
fig = go.Figure()
fig.add_trace(go.Histogram(
x=x0,
histnorm='percent',
name='control', # name used in legend and hover labels
xbins=dict( # bins used for histogram
start=-4.0,
end=3.0,
size=0.5
),
marker_color='#EB89B5',
opacity=0.75
))
fig.add_trace(go.Histogram(
x=x1,
histnorm='percent',
name='experimental',
xbins=dict(
start=-3.0,
end=4,
size=0.5
),
marker_color='#330C73',
opacity=0.75
))
fig.update_layout(
title_text='Sampled Results', # title of plot
xaxis_title_text='Value', # xaxis label
yaxis_title_text='Count', # yaxis label
bargap=0.2, # gap between bars of adjacent location coordinates
bargroupgap=0.1 # gap between bars of the same location coordinates
)
fig.show()
You can add text to histogram bars using the texttemplate
argument. In this example we add the x-axis values as text following the format %{variable}
. We also adjust the size of the text using textfont_size
.
import plotly.graph_objects as go
numbers = ["5", "10", "3", "10", "5", "8", "5", "5"]
fig = go.Figure()
fig.add_trace(go.Histogram(x=numbers, name="count", texttemplate="%{x}", textfont_size=20))
fig.show()
import plotly.graph_objects as go
import numpy as np
x = np.random.randn(500)
fig = go.Figure(data=[go.Histogram(x=x, cumulative_enabled=True)])
fig.show()
import plotly.graph_objects as go
x = ["Apples","Apples","Apples","Oranges", "Bananas"]
y = ["5","10","3","10","5"]
fig = go.Figure()
fig.add_trace(go.Histogram(histfunc="count", y=y, x=x, name="count"))
fig.add_trace(go.Histogram(histfunc="sum", y=y, x=x, name="sum"))
fig.show()
For custom binning along x-axis, use the attribute nbinsx
. Please note that the autobin algorithm will choose a 'nice' round bin size that may result in somewhat fewer than nbinsx
total bins. Alternatively, you can set the exact values for xbins
along with autobinx = False
.
import plotly.graph_objects as go
from plotly.subplots import make_subplots
x = ['1970-01-01', '1970-01-01', '1970-02-01', '1970-04-01', '1970-01-02',
'1972-01-31', '1970-02-13', '1971-04-19']
fig = make_subplots(rows=3, cols=2)
trace0 = go.Histogram(x=x, nbinsx=4)
trace1 = go.Histogram(x=x, nbinsx = 8)
trace2 = go.Histogram(x=x, nbinsx=10)
trace3 = go.Histogram(x=x,
xbins=dict(
start='1969-11-15',
end='1972-03-31',
size='M18'), # M18 stands for 18 months
autobinx=False
)
trace4 = go.Histogram(x=x,
xbins=dict(
start='1969-11-15',
end='1972-03-31',
size='M4'), # 4 months bin size
autobinx=False
)
trace5 = go.Histogram(x=x,
xbins=dict(
start='1969-11-15',
end='1972-03-31',
size= 'M2'), # 2 months
autobinx = False
)
fig.append_trace(trace0, 1, 1)
fig.append_trace(trace1, 1, 2)
fig.append_trace(trace2, 2, 1)
fig.append_trace(trace3, 2, 2)
fig.append_trace(trace4, 3, 1)
fig.append_trace(trace5, 3, 2)
fig.show()
If you want to display information about the individual items within each histogram bar, then create a stacked bar chart with hover information as shown below. Note that this is not technically the histogram chart type, but it will have a similar effect as shown below by comparing the output of px.histogram
and px.bar
. For more information, see the tutorial on bar charts.
import plotly.express as px
df = px.data.tips()
fig1 = px.bar(df, x='day', y='tip', height=300,
title='Stacked Bar Chart - Hover on individual items')
fig2 = px.histogram(df, x='day', y='tip', histfunc='sum', height=300,
title='Histogram Chart')
fig1.show()
fig2.show()
In this example both histograms have a compatible bin settings using bingroup attribute. Note that traces on the same subplot, and with the same barmode
("stack", "relative", "group") are forced into the same bingroup
, however traces with barmode = "overlay"
and on different axes (of the same axis type) can have compatible bin settings. Histogram and histogram2d trace can share the same bingroup
.
import plotly.graph_objects as go
import numpy as np
fig = go.Figure(go.Histogram(
x=np.random.randint(7, size=100),
bingroup=1))
fig.add_trace(go.Histogram(
x=np.random.randint(7, size=20),
bingroup=1))
fig.update_layout(
barmode="overlay",
bargap=0.1)
fig.show()
Histogram bars can also be sorted based on the ordering logic of the categorical values using the categoryorder attribute of the x-axis. Sorting of histogram bars using categoryorder
also works with multiple traces on the same x-axis. In the following examples, the histogram bars are sorted based on the total numerical values.
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="day").update_xaxes(categoryorder='total ascending')
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="day", color="smoker").update_xaxes(categoryorder='total descending')
fig.show()
See function reference for px.histogram()
or https://plotly.com/python/reference/histogram/ for more information and chart attribute options!