jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
introduced in plotly 4.12
Horizontal and vertical lines and rectangles that span an entire
plot can be added via the add_hline
, add_vline
, add_hrect
, and add_vrect
methods of plotly.graph_objects.Figure
. Shapes added with these methods are
added as layout shapes (as shown when doing print(fig)
, for
example). These shapes are fixed to the endpoints of one axis, regardless of the
range of the plot, and fixed to data coordinates on the other axis. The
following shows some possibilities, try panning and zooming the resulting figure
to see how the shapes stick to some axes:
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="petal_length", y="petal_width")
fig.add_hline(y=0.9)
fig.add_vrect(x0=0.9, x1=2)
fig.show()
These shapes can be styled by passing the same arguments as are accepted by add_shape
:
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="petal_length", y="petal_width")
fig.add_vline(x=2.5, line_width=3, line_dash="dash", line_color="green")
fig.add_hrect(y0=0.9, y1=2.6, line_width=0, fillcolor="red", opacity=0.2)
fig.show()
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'horizontal-vertical-shapes', width='100%', height=1200)
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
Text annotations can optionally be added to an autoshape
using the annotation_text
keyword argument, and positioned using the annotation_position
argument:
import plotly.express as px
df = px.data.stocks(indexed=True)
fig = px.line(df)
fig.add_hline(y=1, line_dash="dot",
annotation_text="Jan 1, 2018 baseline",
annotation_position="bottom right")
fig.add_vrect(x0="2018-09-24", x1="2018-12-18",
annotation_text="decline", annotation_position="top left",
fillcolor="green", opacity=0.25, line_width=0)
fig.show()
Extra formatting of the annotation can be done using magic-underscores prefixed by annotation_
or by passing a dict
or go.layout.Annotation
instance to the annotation
argument:
import plotly.express as px
df = px.data.stocks(indexed=True)
fig = px.line(df)
fig.add_hline(y=1, line_dash="dot",
annotation_text="Jan 1, 2018 baseline",
annotation_position="bottom right",
annotation_font_size=20,
annotation_font_color="blue"
)
fig.add_vrect(x0="2018-09-24", x1="2018-12-18",
annotation_text="decline", annotation_position="top left",
annotation=dict(font_size=20, font_family="Times New Roman"),
fillcolor="green", opacity=0.25, line_width=0)
fig.show()
The same line or box can be added to multiple subplots or facets by setting the row
and/or col
to "all"
. The default row
and col
values are "all"
.
import plotly.express as px
df = px.data.stocks(indexed=True)
fig = px.line(df, facet_col="company", facet_col_wrap=2)
fig.add_hline(y=1, line_dash="dot", row=3, col="all",
annotation_text="Jan 1, 2018 baseline",
annotation_position="bottom right")
fig.add_vrect(x0="2018-09-24", x1="2018-12-18", row="all", col=1,
annotation_text="decline", annotation_position="top left",
fillcolor="green", opacity=0.25, line_width=0)
fig.show()
New in 5.14
Text labels on shapes, introduced in version 5.14, is now the recommended way to add text to shapes. The above examples using add_hline
, add_vrect
, add_hrect
, and add_vline
that add annotations can be rewritten to use label
.
import plotly.express as px
df = px.data.stocks(indexed=True)
fig = px.line(df)
fig.add_hline(
y=1,
line_dash="dot",
label=dict(
text="Jan 1 2018 Baseline",
textposition="end",
font=dict(size=20, color="blue"),
yanchor="top",
),
)
fig.add_vrect(
x0="2018-09-24",
x1="2018-12-18",
label=dict(
text="Decline",
textposition="top center",
font=dict(size=20, family="Times New Roman"),
),
fillcolor="green",
opacity=0.25,
line_width=0,
)
fig.show()
With text labels on shapes, you can also add text labels to shapes other than lines and rectangles, and the labels can be added automatically to shapes drawn by the user.
More details are available about layout shapes and annotations.
Reference documentation is also available for add_hline
, add_vline
, add_hrect
, add_vrect
.