jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
In this tutorial we introduce a new trace named "Indicator". The purpose of "indicator" is to visualize a single value specified by the "value" attribute. Three distinct visual elements are available to represent that value: number, delta and gauge. Any combination of them can be specified via the "mode" attribute. Top-level attributes are:
- value: the value to visualize
- mode: which visual elements to draw
- align: how to align number and delta (left, center, right)
- domain: the extent of the figure
Then we can configure the 3 different visual elements via their respective container:
- number is simply a representation of the number in text. It has attributes:
- valueformat: to format the number
- prefix: a string before the number
- suffix: a string after the number
- font.(family|size): to control the font
- reference: the number to compare the value with
- relative: whether that difference is absolute or relative
- valueformat: to format the delta
- (increasing|decreasing).color: color to be used for positive or decreasing delta
- (increasing|decreasing).symbol: symbol displayed on the left of the delta
- font.(family|size): to control the font
- position: position relative to
number
(either top, left, bottom, right) - prefix: a string to appear before the delta
- suffix: a string to appear after the delta
title
with 'text' attribute which is a string, and 'align' which can be set to left, center, and right.
There are two gauge types: angular and bullet. Here is a combination of both shapes (angular, bullet), and different modes (gauge, delta, and value):
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Indicator(
value = 200,
delta = {'reference': 160},
gauge = {
'axis': {'visible': False}},
domain = {'row': 0, 'column': 0}))
fig.add_trace(go.Indicator(
value = 120,
gauge = {
'shape': "bullet",
'axis' : {'visible': False}},
domain = {'x': [0.05, 0.5], 'y': [0.15, 0.35]}))
fig.add_trace(go.Indicator(
mode = "number+delta",
value = 300,
domain = {'row': 0, 'column': 1}))
fig.add_trace(go.Indicator(
mode = "delta",
value = 40,
domain = {'row': 1, 'column': 1}))
fig.update_layout(
grid = {'rows': 2, 'columns': 2, 'pattern': "independent"},
template = {'data' : {'indicator': [{
'title': {'text': "Speed"},
'mode' : "number+delta+gauge",
'delta' : {'reference': 90}}]
}})
import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = 450,
title = {'text': "Speed"},
domain = {'x': [0, 1], 'y': [0, 1]}
))
fig.show()
The equivalent of above "angular gauge":
import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
mode = "number+gauge+delta",
gauge = {'shape': "bullet"},
delta = {'reference': 300},
value = 220,
domain = {'x': [0.1, 1], 'y': [0.2, 0.9]},
title = {'text': "Avg order size"}))
fig.show()
Another interesting feature is that indicator trace sits above the other traces (even the 3d ones). This way, it can be easily used as an overlay as demonstrated below
import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
mode = "number+delta",
value = 492,
delta = {"reference": 512, "valueformat": ".0f"},
title = {"text": "Users online"},
domain = {'y': [0, 1], 'x': [0.25, 0.75]}))
fig.add_trace(go.Scatter(
y = [325, 324, 405, 400, 424, 404, 417, 432, 419, 394, 410, 426, 413, 419, 404, 408, 401, 377, 368, 361, 356, 359, 375, 397, 394, 418, 437, 450, 430, 442, 424, 443, 420, 418, 423, 423, 426, 440, 437, 436, 447, 460, 478, 472, 450, 456, 436, 418, 429, 412, 429, 442, 464, 447, 434, 457, 474, 480, 499, 497, 480, 502, 512, 492]))
fig.update_layout(xaxis = {'range': [0, 62]})
fig.show()
Data card helps to display more contextual information about the data. Sometimes one number is all you want to see in a report, such as total sales, annual revenue, etc. This example shows how to visualize these big numbers:
import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
mode = "number+delta",
value = 400,
number = {'prefix': "$"},
delta = {'position': "top", 'reference': 320},
domain = {'x': [0, 1], 'y': [0, 1]}))
fig.update_layout(paper_bgcolor = "lightgray")
fig.show()
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Indicator(
mode = "number+delta",
value = 200,
domain = {'x': [0, 0.5], 'y': [0, 0.5]},
delta = {'reference': 400, 'relative': True, 'position' : "top"}))
fig.add_trace(go.Indicator(
mode = "number+delta",
value = 350,
delta = {'reference': 400, 'relative': True},
domain = {'x': [0, 0.5], 'y': [0.5, 1]}))
fig.add_trace(go.Indicator(
mode = "number+delta",
value = 450,
title = {"text": "Accounts<br><span style='font-size:0.8em;color:gray'>Subtitle</span><br><span style='font-size:0.8em;color:gray'>Subsubtitle</span>"},
delta = {'reference': 400, 'relative': True},
domain = {'x': [0.6, 1], 'y': [0, 1]}))
fig.show()
On both a number
and a delta
, you can add a string to appear before the value using prefix
. You can add a string to appear after the value using suffix
. In the following example, we add '$' as a prefix
and 'm' as suffix
for both the number
and delta
.
Note: suffix
and prefix
on delta
are new in 5.10
import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
mode = "number+delta",
value = 492,
number = {"prefix": "$", "suffix": "m"},
delta = {"reference": 512, "valueformat": ".0f", "prefix": "$", "suffix": "m"},
title = {"text": "Profit"},
domain = {'y': [0, 1], 'x': [0.25, 0.75]}))
fig.add_trace(go.Scatter(
y = [325, 324, 405, 400, 424, 404, 417, 432, 419, 394, 410, 426, 413, 419, 404, 408, 401, 377, 368, 361, 356, 359, 375, 397, 394, 418, 437, 450, 430, 442, 424, 443, 420, 418, 423, 423, 426, 440, 437, 436, 447, 460, 478, 472, 450, 456, 436, 418, 429, 412, 429, 442, 464, 447, 434, 457, 474, 480, 499, 497, 480, 502, 512, 492]))
fig.update_layout(xaxis = {'range': [0, 62]})
fig.show()
See https://plotly.com/python/reference/indicator/ for more information and chart attribute options!