jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
This page shows examples of how to configure 2-dimensional Cartesian axes to follow a logarithmic rather than linear progression. Configuring gridlines, ticks, tick labels and axis titles on logarithmic axes is done the same was as with linear axes.
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
All of Plotly Express' 2-D Cartesian functions include the log_x
and log_y
keyword arguments, which can be set to True
to set the corresponding axis to a logarithmic scale:
import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", hover_name="country", log_x=True)
fig.show()
Setting the range of a logarithmic axis with Plotly Express works the same was as with linear axes: using the range_x
and range_y
keywords. Note that you cannot set the range to include 0 or less.
import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", hover_name="country",
log_x=True, range_x=[1,100000], range_y=[0,100])
fig.show()
new in 5.8
You can position and style minor ticks using minor
. This takes a dict
of properties to apply to minor ticks. See the figure reference for full details on the accepted keys in this dict.
In this example we set the tick length with ticklen
, add the ticks on the inside with ticks="inside"
, and turn grid lines on with howgrid=True
.
import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", hover_name="country",
log_x=True, range_x=[1,100000], range_y=[0,100])
fig.update_xaxes(minor=dict(ticks="inside", ticklen=6, showgrid=True))
fig.show()
If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Figure
class from plotly.graph_objects
.
import plotly.graph_objects as go
import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = go.Figure()
fig.add_trace(go.Scatter(mode="markers", x=df["gdpPercap"], y=df["lifeExp"] ))
fig.update_xaxes(type="log")
fig.show()
Setting the range of a logarithmic axis with plotly.graph_objects
is very different than setting the range of linear axes: the range is set using the exponent rather than the actual value:
import plotly.graph_objects as go
import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = go.Figure()
fig.add_trace(go.Scatter(mode="markers", x=df["gdpPercap"], y=df["lifeExp"] ))
fig.update_xaxes(type="log", range=[0,5]) # log range: 10^0=1, 10^5=100000
fig.update_yaxes(range=[0,100]) # linear range
fig.show()
See function reference for px.(scatter)
or https://plotly.com/python/reference/layout/xaxis/#layout-xaxis-type for more information and chart attribute options!