Skip to content

Latest commit

 

History

History
122 lines (101 loc) · 3.95 KB

marginal-plots.md

File metadata and controls

122 lines (101 loc) · 3.95 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.2
1.4.2
display_name language name
Python 3
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.7.7
description display_as language layout name order page_type permalink thumbnail
How to add marginal distribution plots.
statistical
python
base
Marginal Distribution Plots
13
u-guide
python/marginal-plots/
thumbnail/figure-labels.png

Overview

Marginal distribution plots are small subplots above or to the right of a main plot, which show the distribution of data along only one dimension. Marginal distribution plot capabilities are built into various Plotly Express functions such as scatter and histogram. Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.

Scatter Plot Marginals

The marginal_x and marginal_y arguments accept one of "histogram", "rug", "box", or "violin" (see also how to create histograms, box plots and violin plots as the main figure).

Marginal plots are linked to the main plot: try zooming or panning on the main plot.

Marginal plots also support hover, including per-point hover as with the rug-plot on the right: try hovering over the points on the right marginal plot.

import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_length", y="sepal_width", marginal_x="histogram", marginal_y="rug")
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.density_heatmap(df, x="sepal_length", y="sepal_width", marginal_x="box", marginal_y="violin")
fig.show()

Marginal Plots and Color

Marginal plots respect the color argument as well, and are linked to the respective legend elements. Try clicking on the legend items.

import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_length", y="sepal_width", color="species", 
                 marginal_x="box", marginal_y="violin",
                  title="Click on the legend items!")
fig.show()

Marginal Plots on Histograms

Histograms are often used to show the distribution of a variable, and they also support marginal plots in Plotly Express, with the marginal argument:

import plotly.express as px
df = px.data.iris()
fig = px.histogram(df, x="sepal_length", color="species", marginal="box")
fig.show()

Try hovering over the rug plot points to identify individual country values in the histogram below:

import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = px.histogram(df, x="lifeExp", color="continent", marginal="rug", hover_name="country",
                  title="Hover over the rug plot!")
fig.show()

Marginal Plots and Facets

Marginal plots can be used in conjunction with Plotly Express facets so long as they go along different directions:

import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", color="sex", facet_col="day",
                  marginal_x="box")
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", color="sex", facet_row="time",
                  marginal_y="box")
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", color="sex", facet_col="day",
                  marginal="box")
fig.show()