jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Marginal distribution plots are small subplots above or to the right of a main plot, which show the distribution of data along only one dimension. Marginal distribution plot capabilities are built into various Plotly Express functions such as scatter
and histogram
. Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
The marginal_x
and marginal_y
arguments accept one of "histogram"
, "rug"
, "box"
, or "violin"
(see also how to create histograms, box plots and violin plots as the main figure).
Marginal plots are linked to the main plot: try zooming or panning on the main plot.
Marginal plots also support hover, including per-point hover as with the rug-plot on the right: try hovering over the points on the right marginal plot.
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_length", y="sepal_width", marginal_x="histogram", marginal_y="rug")
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.density_heatmap(df, x="sepal_length", y="sepal_width", marginal_x="box", marginal_y="violin")
fig.show()
Marginal plots respect the color
argument as well, and are linked to the respective legend elements. Try clicking on the legend items.
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_length", y="sepal_width", color="species",
marginal_x="box", marginal_y="violin",
title="Click on the legend items!")
fig.show()
Histograms are often used to show the distribution of a variable, and they also support marginal plots in Plotly Express, with the marginal
argument:
import plotly.express as px
df = px.data.iris()
fig = px.histogram(df, x="sepal_length", color="species", marginal="box")
fig.show()
Try hovering over the rug plot points to identify individual country values in the histogram below:
import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = px.histogram(df, x="lifeExp", color="continent", marginal="rug", hover_name="country",
title="Hover over the rug plot!")
fig.show()
Marginal plots can be used in conjunction with Plotly Express facets so long as they go along different directions:
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", color="sex", facet_col="day",
marginal_x="box")
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", color="sex", facet_row="time",
marginal_y="box")
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", color="sex", facet_col="day",
marginal="box")
fig.show()