-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
executable file
·203 lines (142 loc) · 6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python3
import os
import sys
import json
import math
import time
import pprint as pp
from tqdm import tqdm
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
from config import PARAMS_CONFIG
from models import EncoderSeq, QDecoder
from pack_model import build_model, get_tgt_entropy
from problems.pack2d.render import render
from trainer import train_epoch, full_eval, epoch_logger
from utils import (
get_params,
set_up_env,
logger,
log_graph,
get_scheduler,
get_grad_requiring_params,
load_checkpoint,
save_checkpoint)
def launch(env_params,
model_params,
problem_params,
adapt_span_params,
optim_params,
trainer_params,
rl_params):
# print args and prepare directory and logger
parameters_dict = locals()
# print parameters
for params_key, params_val in parameters_dict.items():
print(params_key)
pp.pprint(params_val)
writer_name = "{}".format(env_params['run_name'])
run_name = "{}_{}".format(env_params['run_name'], time.strftime("%Y%m%dT%H%M%S"))
save_dir = os.path.join(
env_params['output_dir'],
"{}_{}".format(problem_params['problem_type'], model_params['block_size']),
run_name
)
os.makedirs(save_dir)
checkpoint_file = os.path.join(save_dir, 'checkpoint.pt')
# Save arguments so exact configuration can always be found
with open(os.path.join(save_dir, "args.json"), 'w') as fp:
json.dump(parameters_dict, fp)
logger.configure(dir=save_dir, format_strs=os.getenv('OPENAI_LOG_FORMAT', 'log,csv').split(','))
if not trainer_params['no_tensorboard']:
tb_writer = SummaryWriter(comment= "-" + writer_name)
else:
tb_writer = None
# ENV and MODEL
set_up_env(env_params)
device = env_params['device']
target_entropy = get_tgt_entropy(
problem_params['problem_type'],
model_params['block_size'],
rl_params['tgt_entropy'],
problem_params['p_options']
).to(device)
modules = build_model(
device,
problem_params,
model_params,
adapt_span_params)
# show model size
get_grad_requiring_params(modules)
# print(modules)
critic_params = [param for name, param in modules['critic'].named_parameters() if 'module.log_alpha' not in name]
# OPTIMIZER AND SCHEDULER
optimizer = optim.Adam([
{'params': modules['actor'].parameters()},
{'params': critic_params, 'lr': optim_params['critic_lr']},
{'params': modules['critic'].module.log_alpha, 'lr': optim_params['critic_lr']}
], lr=optim_params['actor_lr'])
lambda1 = lambda epoch: min(1, epoch / optim_params['lr_warmup'])
# end_lr = 1e-1
# start_lr = 1e-7
# lr_find_epochs = trainer_params['nb_iter']/2
# search_lambda = lambda epoch: math.exp(epoch * math.log(end_lr / start_lr) / (lr_find_epochs * model_params['block_size']))
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
# warm up scheduler for both two groups
# scheduler = get_scheduler(optimizer, optim_params['lr_warmup'])
iter_init = load_checkpoint(
trainer_params['checkpoint_path'], modules, optimizer, scheduler)
for epoch in tqdm(range(iter_init, trainer_params['nb_iter'])):
# print("Start train epoch {}, lr={} for run {}".format(epoch, optimizer.param_groups[0]['lr'], run_name))
# t_sta = time.time() # in seconds
state, values, returns, losses, entropy, grad_norms, log_alpha = train_epoch(
modules,
optimizer,
scheduler,
problem_params,
device,
target_entropy,
**model_params, **trainer_params, **optim_params, **rl_params)
# for resume and render
if epoch % trainer_params['checkpoint_interval'] == 0:
log_graph.save_train_graph(state, epoch, save_dir)
save_checkpoint(checkpoint_file, epoch, modules, optimizer, scheduler)
# with torch.no_grad():
# modules.eval()
# trainer_params['full_eval_mode'] = True
# t_sta = time.time() # in seconds
# state, values, returns, losses, entropy, _, _ = train_epoch(
# modules,
# optimizer,
# scheduler,
# problem_params,
# device,
# target_entropy,
# **model_params, **trainer_params, **optim_params, **rl_params)
# gap_ratio = state.get_gap_ratio()
# avg_gap_ratio = gap_ratio.mean().item()
# elapsed = time.time() - t_sta
# print("Finished evaluation with gap ratio {}, took {} s".format(avg_gap_ratio, time.strftime('%H:%M:%S', time.gmtime(elapsed))))
# for monitor
epoch_logger(epoch, state, values, returns, losses, entropy, grad_norms, log_alpha, optimizer,
tb_writer, trainer_params['log_interval'], run_name)
# perform a evaluation after training
with torch.no_grad():
modules.eval()
trainer_params['full_eval_mode'] = True
t_sta = time.time() # in seconds
state, values, returns, losses, entropy, _, _ = train_epoch(
modules,
optimizer,
scheduler,
problem_params,
device,
target_entropy,
**model_params, **trainer_params, **optim_params, **rl_params)
gap_ratio = state.get_gap_ratio()
avg_gap_ratio = gap_ratio.mean().item()
elapsed = time.time() - t_sta
print("Finished evaluation with gap ratio {}, took {} s".format(avg_gap_ratio, time.strftime('%H:%M:%S', time.gmtime(elapsed))))
if __name__ == '__main__':
launch(**get_params(params_config=PARAMS_CONFIG))