-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpack_model.py
executable file
·201 lines (142 loc) · 5.67 KB
/
pack_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python3
import torch
from torch import nn
from models import EncoderSeq, QDecoder
def get_tgt_entropy(problem_type, block_size, tgt_entropy, p_options):
s_tgt_entropy = block_size * tgt_entropy / p_options
if problem_type=='pack2d':
r_tgt_entropy = 2 * tgt_entropy / p_options
target_entropy = torch.tensor([s_tgt_entropy, r_tgt_entropy, tgt_entropy])
elif problem_type=='pack3d':
r_tgt_entropy = 6 * tgt_entropy / p_options
target_entropy = torch.tensor([s_tgt_entropy, r_tgt_entropy, tgt_entropy, tgt_entropy])
else:
raise ValueError('Invalided problem type')
print('target_entropy: ', target_entropy)
return target_entropy
class PackDecoder(nn.Module):
def __init__(self, head_hidden_size, res_size, state_size, hidden_size, decoder_layers, **kargs):
nn.Module.__init__(self)
self.att_decoder = QDecoder(state_size, hidden_size, decoder_nb_layers=decoder_layers, **kargs)
self.head = nn.Sequential(
nn.Linear(hidden_size, head_hidden_size),
nn.ReLU(),
nn.Linear(head_hidden_size, res_size)
)
def forward(self, x, embedding):
h = self.att_decoder(x, embedding)
out = self.head(h)
return out
class Cirtic(nn.Module):
def __init__(self, head_hidden_size, res_size, packed_state_size, box_state_size, hidden_size, c_encoder_layers, c_decoder_layers, **kargs):
nn.Module.__init__(self)
# add this parameter for entropy temp
# 3D
if packed_state_size==6:
self.log_alpha = nn.Parameter(torch.tensor([-2.0,-2.0,-2.0, -2.0]))
elif packed_state_size==4:
self.log_alpha = nn.Parameter(torch.tensor([-2.0,-2.0,-2.0]))
else:
raise ValueError('Invalided problem type')
self.att_encoder = EncoderSeq(
state_size=packed_state_size,
hidden_size=hidden_size,
encoder_nb_layers=c_encoder_layers,
**kargs)
self.att_decoder = QDecoder(
box_state_size,
hidden_size,
decoder_nb_layers=c_decoder_layers,
**kargs)
self.head = nn.Sequential(
nn.Linear(hidden_size, head_hidden_size),
nn.ReLU(),
nn.Linear(head_hidden_size, res_size)
)
def forward(self, q, x, h_cache):
embedding, h_cache = self.att_encoder(x, h_cache)
h = self.att_decoder(q, embedding) # B x Q x H
h = h.mean(dim=1) # B x H
out = self.head(h)
return out, h_cache
def set_model(model, device, parallel=True):
if parallel:
model = torch.nn.DataParallel(model)
model = model.to(device)
return model
def get_ac_parameters(modules):
critic_params = modules['critic'].parameters()
actor_params = modules['actor'].parameters()
return actor_params, critic_params
def build_model(
device,
problem_params,
model_params,
adapt_span_params):
if problem_params['problem_type']=='pack2d':
packed_state_size = 4
box_state_size = 2
rotate_out_size = 2
elif problem_params['problem_type']=='pack3d':
packed_state_size = 6
box_state_size = 3
rotate_out_size = 6
else:
raise ValueError('Invalided problem type')
encoder = EncoderSeq(
state_size=packed_state_size,
encoder_nb_layers=model_params['encoder_layers'],
**model_params,
adapt_span_params=adapt_span_params)
s_decoder = PackDecoder(head_hidden_size=model_params['head_hidden'],
res_size=1,
state_size=box_state_size,
**model_params,
adapt_span_params=adapt_span_params)
r_decoder = PackDecoder(head_hidden_size=model_params['head_hidden'],
res_size=rotate_out_size,
state_size=box_state_size,
**model_params,
adapt_span_params=adapt_span_params)
p_decoder = PackDecoder(head_hidden_size=model_params['head_hidden_pos'],
res_size=problem_params['p_options'],
state_size=box_state_size,
**model_params,
adapt_span_params=adapt_span_params)
q_decoder = PackDecoder(head_hidden_size=model_params['head_hidden_pos'],
res_size=problem_params['p_options'],
state_size=box_state_size,
**model_params,
adapt_span_params=adapt_span_params)
critic = Cirtic(head_hidden_size=model_params['head_hidden'],
res_size=1,
packed_state_size=packed_state_size,
box_state_size=box_state_size,
**model_params,
adapt_span_params=adapt_span_params)
encoder = set_model(encoder, device)
s_decoder = set_model(s_decoder, device)
r_decoder = set_model(r_decoder, device)
p_decoder = set_model(p_decoder, device)
q_decoder = set_model(q_decoder, device)
critic = set_model(critic, device)
if problem_params['problem_type'] == 'pack2d':
actor_modules = nn.ModuleDict({
'encoder': encoder,
's_decoder': s_decoder,
'r_decoder': r_decoder,
'p_decoder': p_decoder}
)
else:
actor_modules = nn.ModuleDict({
'encoder': encoder,
's_decoder': s_decoder,
'r_decoder': r_decoder,
'p_decoder': p_decoder,
'q_decoder': q_decoder}
)
packing_modules = nn.ModuleDict({
'actor': actor_modules,
'critic': critic
})
return packing_modules