-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
373 lines (311 loc) · 12.5 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os.path as osp
import torch
from torch_geometric.data import Data
from torch_geometric.data import InMemoryDataset, Dataset
from torch_geometric.utils import to_undirected, add_self_loops, remove_self_loops, add_remaining_self_loops
from torch_sparse import coalesce
from torch_geometric.io import read_txt_array
import random
import numpy as np
import scipy.sparse as sp
import pickle
import datetime
"""
Functions to help load the graph data
"""
def read_file(folder, name, dtype=None):
path = osp.join(folder, '{}.txt'.format(name))
return read_txt_array(path, sep=',', dtype=dtype)
def split(data, batch):
"""
PyG util code to create graph batches
"""
node_slice = torch.cumsum(torch.from_numpy(np.bincount(batch)), 0)
node_slice = torch.cat([torch.tensor([0]), node_slice])
row, _ = data.edge_index
edge_slice = torch.cumsum(torch.from_numpy(np.bincount(batch[row])), 0)
edge_slice = torch.cat([torch.tensor([0]), edge_slice])
# Edge indices should start at zero for every graph.
data.edge_index -= node_slice[batch[row]].unsqueeze(0)
data.__num_nodes__ = torch.bincount(batch).tolist()
slices = {'edge_index': edge_slice}
if data.x is not None:
slices['x'] = node_slice
if data.edge_attr is not None:
slices['edge_attr'] = edge_slice
if data.y is not None:
if data.y.size(0) == batch.size(0):
slices['y'] = node_slice
else:
slices['y'] = torch.arange(0, batch[-1] + 2, dtype=torch.long)
return data, slices
def read_graph_data(folder, feature):
"""
PyG util code to create PyG data instance from raw graph data
"""
if isinstance(feature, str):
node_attributes = sp.load_npz(folder + f'new_{feature}_feature.npz')
elif isinstance(feature, list): ## concat the multiple featues
node_attributes = sp.hstack([sp.load_npz(folder + f'new_{f}_feature.npz') for f in feature])
edge_index = read_file(folder, 'A', torch.long).t()
node_graph_id = np.load(folder + 'node_graph_id.npy')
graph_labels = np.load(folder + 'graph_labels.npy')
edge_attr = None
x = torch.from_numpy(node_attributes.todense()).to(torch.float)
node_graph_id = torch.from_numpy(node_graph_id).to(torch.long)
y = torch.from_numpy(graph_labels).to(torch.long)
_, y = y.unique(sorted=True, return_inverse=True)
num_nodes = edge_index.max().item() + 1 if x is None else x.size(0)
edge_index, edge_attr = add_self_loops(edge_index, edge_attr)
edge_index, edge_attr = coalesce(edge_index, edge_attr, num_nodes, num_nodes)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
data, slices = split(data, node_graph_id)
return data, slices
class ToUndirected:
def __init__(self):
"""
PyG util code to transform the graph to the undirected graph
"""
pass
def __call__(self, data):
edge_attr = None
edge_index = to_undirected(data.edge_index, data.x.size(0))
num_nodes = edge_index.max().item() + 1 if data.x is None else data.x.size(0)
# edge_index, edge_attr = add_self_loops(edge_index, edge_attr)
edge_index, edge_attr = coalesce(edge_index, edge_attr, num_nodes, num_nodes)
data.edge_index = edge_index
data.edge_attr = edge_attr
return data
class DropEdge:
def __init__(self, tddroprate, budroprate):
"""
Drop edge operation from BiGCN (Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks)
1) Generate TD and BU edge indices
2) Drop out edges
Code from https://github.com/TianBian95/BiGCN/blob/master/Process/dataset.py
"""
self.tddroprate = tddroprate
self.budroprate = budroprate
def __call__(self, data):
edge_index = data.edge_index
if self.tddroprate > 0:
row = list(edge_index[0])
col = list(edge_index[1])
length = len(row)
poslist = random.sample(range(length), int(length * (1 - self.tddroprate)))
poslist = sorted(poslist)
row = list(np.array(row)[poslist])
col = list(np.array(col)[poslist])
new_edgeindex = [row, col]
else:
new_edgeindex = edge_index
burow = list(edge_index[1])
bucol = list(edge_index[0])
if self.budroprate > 0:
length = len(burow)
poslist = random.sample(range(length), int(length * (1 - self.budroprate)))
poslist = sorted(poslist)
row = list(np.array(burow)[poslist])
col = list(np.array(bucol)[poslist])
bunew_edgeindex = [row, col]
else:
bunew_edgeindex = [burow, bucol]
data.edge_index = torch.LongTensor(new_edgeindex)
data.BU_edge_index = torch.LongTensor(bunew_edgeindex)
data.root = torch.FloatTensor(data.x[0])
data.root_index = torch.LongTensor([0])
return data
class FNNDataset(InMemoryDataset):
r"""
The Graph datasets built upon FakeNewsNet data
Args:
root (string): Root directory where the dataset should be saved.
name (string): The `name
<https://chrsmrrs.github.io/datasets/docs/datasets/>`_ of the
dataset.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
"""
def __init__(self, root, name, feature='spacy', empty=False, transform=None, pre_transform=None, pre_filter=None):
self.name = name
self.root = root
self.feature = feature
super(FNNDataset, self).__init__(root, transform, pre_transform, pre_filter)
if not empty:
#self.data, self.slices, self.train_idx, self.val_idx, self.test_idx = torch.load(self.processed_paths[0])
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_dir(self):
name = 'raw/'
return osp.join(self.root, self.name, name)
@property
def processed_dir(self):
name = 'processed/'
return osp.join(self.root, self.name, name)
@property
def num_node_attributes(self):
if self.data.x is None:
return 0
return self.data.x.size(1)
@property
def raw_file_names(self):
names = ['node_graph_id', 'graph_labels']
return ['{}.npy'.format(name) for name in names]
@property
def processed_file_names(self):
if isinstance(self.feature, str):
_feature = self.feature
elif isinstance(self.feature, list): # for multiple features
_feature = '_'.join(self.feature)
if self.pre_filter is None:
return f'{self.name[:3]}_data_{_feature}.pt'
else:
return f'{self.name[:3]}_data_{_feature}_prefilter.pt'
# @property
# def label(self):
# return self.data[idx].y for idx in range(len(self))
def download(self):
raise NotImplementedError('Must indicate valid location of raw data. No download allowed')
def process(self):
self.data, self.slices = read_graph_data(self.raw_dir, self.feature)
if self.pre_filter is not None:
data_list = [self.get(idx) for idx in range(len(self))]
data_list = [data for data in data_list if self.pre_filter(data)]
self.data, self.slices = self.collate(data_list)
if self.pre_transform is not None:
data_list = [self.get(idx) for idx in range(len(self))]
data_list = [self.pre_transform(data) for data in data_list]
self.data, self.slices = self.collate(data_list)
#self.train_idx = torch.from_numpy(np.load(self.raw_dir + 'train_idx.npy')).to(torch.long)
#self.val_idx = torch.from_numpy(np.load(self.raw_dir + 'val_idx.npy')).to(torch.long)
#self.test_idx = torch.from_numpy(np.load(self.raw_dir + 'test_idx.npy')).to(torch.long)
#torch.save((self.data, self.slices, self.train_idx, self.val_idx, self.test_idx), self.processed_paths[0])
torch.save((self.data, self.slices), self.processed_paths[0])
def __repr__(self):
return '{}({})'.format(self.name, len(self))
class ConcatGraphDataset(Dataset):
def __init__(self, *datasets):
self.datasets = datasets
self.concat_x = torch.cat((self.datasets[0].data.x, self.datasets[1].data.x), dim=1)
node_graph_id = np.load(self.datasets[0].raw_dir + 'node_graph_id.npy')
self.node_graph_id = torch.from_numpy(node_graph_id).to(torch.long)
# if len(self.datasets) > 2:
# for d in self.datasets[2:]:
# self.concat_x = torch.cat((self.concat_x, d.x), dim=1)
def __getitem__(self, i):
self.data = Data(x=self.concat_x, edge_index=self.datasets[0][i].edge_index, edge_attr=self.datasets[0][i].edge_attr, y=self.datasets[0][i].y)
self.dataset, _ = split(self.data, self.node_graph_id)
return self.dataset
def __len__(self):
return min(len(d) for d in self.datasets)
@property
def num_features(self):
return sum(d.num_features for d in self.datasets)
@property
def num_classes(self) -> int:
return self.datasets[0].num_classes
class Custom_Hetero_Dataset(torch.utils.data.Dataset):
def __init__(self, dataset, node_type_names, edge_type_names):
self.dataset = dataset
self.node_type_names = node_type_names
self.edge_type_names = edge_type_names
super(Custom_Hetero_Dataset, self).__init__()
def __getitem__ (self, idx):
node_type_tensor = [1]*self.dataset[idx].num_nodes
node_type_tensor[0] = 0
each_edge = self.dataset[idx].edge_index
edge1 = (each_edge[1]==0)*1 # tweets to news
edge3 = ((each_edge[0]!=0)&(each_edge[1]!=0))*3 # tweets to tweets
edge1[0] = 2 # news-self
edge_type_tensor = edge1 + edge3
# edge_type_tensor[(each_edge[1]==0)&(each_edge[0]!=0)] = 1
#edge_type_tensor = tweeted_edge_tensor + retweet_edge_tensor
# edge_type_tensor[each_edge[0] == each_edge[1]] = 2
# edge_type_tensor[each_edge[0] == each_edge[1]] = 3 # tweets->tweets == 3
# edge_type_tensor[0] = 2 # news->news ==2
data = self.dataset[idx].to_heterogeneous(node_type=torch.tensor(node_type_tensor), edge_type=edge_type_tensor, node_type_names=self.node_type_names, edge_type_names=self.edge_type_names)
return data
def __len__(self):
return len(self.dataset)
def __iter__(self):
for idx in range(len(self)):
yield self.data[idx]
def make_temporal_weight(data, name):
with open(f"data/{name[:3]}_id_time_mapping.pkl", 'rb') as f:
time = pickle.load(f)
time_dict = {}
idx = 0
for b_i, each_batch in enumerate(data):
time_dict[b_i] = {0: 0}
leng = each_batch['x'].shape[0]
for g_i, each_idx in enumerate(range(idx+1, idx+leng), 1):
time_dict[b_i][g_i] = datetime.datetime.fromtimestamp(time[each_idx])
idx += leng
return time_dict
def make_edge_weight(data, time_dict, unit='minute', use_depth_divide=False):
edge_index_list, edge_weight_list, edge_attr_list = [], [], []
DEPTH = 1
for b_i, each_batch in enumerate(data):
edge = remove_self_loops(each_batch.edge_index)[0]
e1, e2 = edge
each_weight = []
for s, t in zip(e1, e2):
s, t = s.item(), t.item()
if s==t:
each_weight.append(1)
elif ((s==0) or (s==1)) & ((t==0) or (t==1)):
each_weight.append(1)
elif s==0:
score = 1 + abs(time_dict[b_i][1] - time_dict[b_i][t]).total_seconds()
if unit=='minute':
score = score/60
each_weight.append(score)
elif t==0:
score = 1 + abs(time_dict[b_i][s] - time_dict[b_i][1]).total_seconds()
if unit=='minute':
score = score/60
each_weight.append(score)
else:
score = 1 + abs(time_dict[b_i][t] - time_dict[b_i][s]).total_seconds()
if unit=='minute':
score = score/60
each_weight.append(())
each_weight = 1/np.log1p(each_weight)
edge, weight = add_remaining_self_loops(edge, torch.tensor(each_weight))
# edge, weight = add_remaining_self_loops(edge, torch.tensor((each_weight-np.min(each_weight))/(np.percentile(each_weight, 75)-np.percentile(each_weight, 25))))
weight[0] = 1
edge_index_list.append(edge)
edge_weight_list.append(weight.float())
if use_depth_divide:
level_list = e2[(e1==0) | (e1==e2)]
edge_depth = torch.ones(len(e1))
source = e1
DEPTH = 1
while source.sum().item()>0:
source = source[torch.isin(source, level_list, invert=True)]
edge_depth += DEPTH * (torch.isin(e1, level_list)).int()
level_list = e2[torch.isin(e1, level_list)]
DEPTH+=1
edge_depth = torch.cat([edge_depth, torch.ones(len(weight)-len(edge_depth))])
data[b_i].edge_attr = edge_depth.squeeze(0)
edge_attr_list.append(edge_depth.float().squeeze(0))
return data, edge_index_list, edge_weight_list, edge_attr_list
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True