-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
327 lines (267 loc) · 11.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
import torch_geometric
from torch_geometric.nn import GCNConv, SAGEConv, GATConv, TransformerConv, global_max_pool, global_mean_pool0
from torch_geometric.data import Batch
import torch_scatter
import math
import copy as cp
from utils import eval_deep
def import_models(args):
if args.model == 'TSNN':
model = TSNN(args)
elif args.model == 'UPFD-gcn':
model = UPFD(args, concat=args.concat)
elif args.model == 'UPFD-gat':
model = UPFD(args, concat=args.concat)
elif args.model == 'UPFD-sage':
model = UPFD(args, concat=args.concat)
elif args.model == 'UPFD-transformer':
model = UPFD(args, concat=args.concat)
elif args.model == 'BiGCN':
model = BiGCN(args.num_features, args.nhid, args.num_classes)
elif args.model == 'GCNFN':
model = GCNFN(args, concat=args.concat)
return model
class TSNN(torch.nn.Module):
def __init__(self, args):
super(TSNN, self).__init__()
self.num_features = args.num_features
self.nhid = args.nhid
self.num_classes = args.num_classes
self.dropout_p = args.dropout_p
self.pre_padding = False
self.use_time_decay_score = args.use_time_decay_score
self.use_depth_divide = args.use_depth_divide
self.seq_layer_type = args.seq_layer_type
self.leafconv1 = GATConv(self.num_features, self.num_features)
self.conv1 = GCNConv(self.num_features, 2*self.nhid)
self.conv2 = GCNConv(2*self.nhid, self.nhid)
if args.seq_layer_type == 'lstm':
self.seq_layer = torch.nn.LSTM(self.num_features, self.nhid//2, num_layer=args.num_seq_layers, batch_first=True, bidirectional=True)
elif args.seq_layer_type == 'gru':
self.seq_layer = torch.nn.GRU(self.num_features, self.nhid//2, num_layer=args.num_seq_layers, batch_first=True, bidirectional=True)
elif args.seq_layer_type == 'transformer':
self.pe = PositionalEncoding(self.num_features, dropout=0.1)
self.seq_layer = torch.nn.Transformer(d_model=self.num_features, nhead=2, num_encoder_layers=args.num_seq_layers, num_decoder_layers=args.num_seq_layers, dim_feedforward=self.num_features//2, batch_first=True)
self.pre_padding = True
elif args.seq_layer_type == 'transformer_encoder':
self.pe = PositionalEncoding(self.num_features, dropout=0.1)
self.seq_layer = torch.nn.TransformerEncoderLayer(d_model=self.num_features, nhead=2, batch_first=True)
self.seq_layer = torch.nn.TransformerEncoder(self.sequential_layer, num_layers=args.num_seq_layers)
self.lin = torch.nn.Linear(self.num_features, self.nhid)
self.cls = torch.nn.Linear(2*self.nhid, self.num_classes)
def forward(self, data):
x, edge_index, time_decay_score, depth, batch, num_graphs = data.x, data.edge_index, data.edge_weight, data.edge_attr, data.batch, data.num_graphs
seq_x = torch_geometric.utils.unbatch(x, batch)
if self.pre_padding:
seq_x = tuple(map(lambda s: s.flip(0), seq_x))
seq_x = pad_sequence(seq_x, batch_first=True)
seq_x = seq_x.flip(1)
else:
seq_x = pad_sequence(seq_x, batch_first=True)
pad_mask = seq_x.sum(-1)==0
#edge_attr = None
news_index = torch.stack([(batch == idx).nonzero().squeeze()[0] for idx in range(num_graphs)])
leaf_index = (torch.isin(edge_index[0], news_index, invert=True) & torch.isin(edge_index[1], news_index, invert=True))
leaf_edge_index = edge_index[:, leaf_index]
x = F.relu(self.leafconv1(x, leaf_edge_index))
if self.use_time_decay_score:
if self.use_depth_divide:
x = F.relu(self.conv1(x, edge_index, time_decay_score/depth))
x = F.dropout(x, p=self.dropout_p, training=self.training)
x = F.relu(self.conv2(x, edge_index, time_decay_score/depth))
else:
x = F.relu(self.conv1(x, edge_index, time_decay_score))
x = F.dropout(x, p=self.dropout_p, training=self.training)
x = F.relu(self.conv2(x, edge_index, time_decay_score))
else:
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, p=self.dropout_p, training=self.training)
x = F.relu(self.conv2(x, edge_index))
if self.seq_layer_type == 'transformer':
seq_x = self.pe(seq_x*math.sqrt(self.num_features))
seq_x = self.seq_layer(seq_x, seq_x, src_key_padding_mask=pad_mask, tgt_key_padding_mask=pad_mask)
elif self.seq_layer_type == 'transformer_encoder':
seq_x = self.pe(seq_x*math.sqrt(self.num_features))
seq_x = self.seq_layer(seq_x, src_key_padding_mask=pad_mask)
elif self.seq_layer_type == 'lstm' or self.sequential_layer == 'gru':
seq_x, _ = self.sequential_layer(seq_x)
if self.pre_padding:
seq_x = seq_x[:, -1, :]
else:
seq_x = seq_x[:, 0, :]
S = F.relu(F.dropout(self.lin(seq_x), p=self.dropout_p, training=self.training))
T = x[news_index] # supernode
S = S.squeeze()
out = torch.cat([T, S], dim=1)
out = F.log_softmax(self.cls(out), dim=-1)
return out
class PositionalEncoding(torch.nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = torch.nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
"""
Args:
input: Tensor, shape [seq_len, batch_size, embedding_dim]
"""
x = x.permute(1, 0, 2)
x = x + self.pe[:x.size(0)]
x = self.dropout(x)
x = x.permute(1, 0, 2)
return x
# def reset_weights(m):
# if isinstance(m, GCNConv) or isinstance(m, GATConv) or isinstance(m, torch.nn.GRU) or isinstance(m, torch.nn.Linear) or isinstance(m, torch.nn.LSTM):
# m.reset_parameters()
@torch.no_grad()
def compute_test(loader, model, is_listed=False, verbose=False):
model.eval()
loss_test = 0.0
out_log = []
for data in loader:
if is_listed:
data = Batch.from_data_list(data)
data = data.to(model.device)
out = model(data)
y = data.y
if verbose:
print(F.softmax(out, dim=1).cpu().numpy())
out_log.append([F.softmax(out, dim=1), y])
loss_test += F.nll_loss(out, y).item()
return eval_deep(out_log, loader), loss_test
#### baseline models ####
class UPFD(torch.nn.Module):
def __init__(self, args, concat=False):
super(UPFD, self).__init__()
self.args = args
self.num_features = args.num_features
self.nhid = args.nhid
self.num_classes = args.num_classes
self.model = args.model
self.concat = concat
if args.model == 'UPFD-gcn':
self.conv1 = GCNConv(self.num_features, self.nhid)
elif args.model == 'UPFD-sage':
self.conv1 = SAGEConv(self.num_features, self.nhid)
elif args.model == 'UPFD-gat':
self.conv1 = GATConv(self.num_features, self.nhid)
elif args.model == 'UPFD-transformer': ## ADD 'TransformerConv' function from PyG.
self.conv1 = TransformerConv(self.num_features, self.nhid)
if self.concat:
self.lin0 = torch.nn.Linear(self.num_features, self.nhid)
self.lin1 = torch.nn.Linear(self.nhid * 2, self.nhid)
self.lin2 = torch.nn.Linear(self.nhid, self.num_classes)
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
edge_attr = None
x = F.relu(self.conv1(x, edge_index, edge_attr))
x = global_max_pool(x, batch)
if self.concat:
news = torch.stack([data.x[(data.batch == idx).nonzero().squeeze()[0]] for idx in range(data.num_graphs)])
news = F.relu(self.lin0(news))
x = torch.cat([x, news], dim=1)
x = F.relu(self.lin1(x))
x = F.log_softmax(self.lin2(x), dim=-1)
return x
class RumorGCN(torch.nn.Module):
"""
The Bi-GCN is adopted from the original implementation from the paper authors
Paper: Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks
Link: https://arxiv.org/pdf/2001.06362.pdf
Source Code: https://github.com/TianBian95/BiGCN
-- Implemented Code: https://github.com/safe-graph/GNN-FakeNews/blob/main/gnn_model/bigcn.py
"""
def __init__(self, in_feats, hid_feats, out_feats, types='TD'):
super(RumorGCN, self).__init__()
self.conv1 = GCNConv(in_feats, hid_feats)
self.conv2 = GCNConv(hid_feats+in_feats, out_feats)
self.types = types ## ADD types of 'TopDown' or 'BottomUp' for combining to a single function.
def forward(self, data):
if self.types == 'TD':
x, edge_index = data.x, data.edge_index
elif self.types == 'BU':
x, edge_index = data.x, data.BU_edge_index
x1 = cp.copy(x.float())
x = self.conv1(x, edge_index)
x2 = cp.copy(x)
rootindex = data.root_index
root_extend = torch.zeros(len(data.batch), x1.size(1)).to(rootindex.device)
batch_size = max(data.batch) + 1
for num_batch in range(batch_size):
index = (torch.eq(data.batch, num_batch))
root_extend[index] = x1[rootindex[num_batch]]
x = torch.cat((x, root_extend), 1)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
x = F.relu(x)
root_extend = torch.zeros(len(data.batch), x2.size(1)).to(rootindex.device)
for num_batch in range(batch_size):
index = (torch.eq(data.batch, num_batch))
root_extend[index] = x2[rootindex[num_batch]]
x = torch.cat((x, root_extend), 1)
x = torch_scatter.scatter_mean(x, data.batch, dim=0)
return x
class BiGCN(torch.nn.Module):
def __init__(self, args):
super(BiGCN, self).__init__()
self.num_features = args.num_features
self.nhid = args.nhid
self.num_classes = args.num_classes
self.TDrumorGCN = RumorGCN(self.num_features, self.nhid, self.nhid, types='TD')
self.BUrumorGCN = RumorGCN(self.num_features, self.nhid, self.nhid, types='BU')
self.fc = torch.nn.Linear((self.nhid+self.nhid) * 2, self.num_classes)
def forward(self, data):
TD_x = self.TDrumorGCN(data)
BU_x = self.BUrumorGCN(data)
x = torch.cat((TD_x, BU_x), 1)
x = self.fc(x)
x = F.log_softmax(x, dim=1)
return x
class GCNFN(torch.nn.Module):
"""
GCNFN is implemented using two GCN layers and one mean-pooling layer as the graph encoder;
the 310-dimensional node feature (args.feature = content) is composed of 300-dimensional
comment word2vec (spaCy) embeddings plus 10-dimensional profile features
Paper: Fake News Detection on Social Media using Geometric Deep Learning
Link: https://arxiv.org/pdf/1902.06673.pdf
Model Configurations:
Vanilla GCNFN: args.concat = False, args.feature = content
UPFD-GCNFN: args.concat = True, args.feature = spacy
--Implemented Code: https://github.com/safe-graph/GNN-FakeNews/blob/main/gnn_model/gcnfn.py
"""
def __init__(self, args, concat=False):
super(GCNFN, self).__init__()
self.num_features = args.num_features
self.nhid = args.nhid
self.num_classes = args.num_classes
self.concat = concat
self.conv1 = GATConv(self.num_features, self.nhid * 2)
self.conv2 = GATConv(self.nhid * 2, self.nhid * 2)
self.fc1 = torch.nn.Linear(self.nhid * 2, self.nhid)
if self.concat:
self.fc0 = torch.nn.Linear(self.num_features, self.nhid)
self.fc1 = torch.nn.Linear(self.nhid * 2, self.nhid)
self.fc2 = torch.nn.Linear(self.nhid, self.num_classes)
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
x = F.selu(self.conv1(x, edge_index))
x = F.selu(self.conv2(x, edge_index))
x = F.selu(global_mean_pool(x, batch))
x = F.selu(self.fc1(x))
x = F.dropout(x, p=0.5, training=self.training)
if self.concat:
news = torch.stack([data.x[(data.batch == idx).nonzero().squeeze()[0]] for idx in range(data.num_graphs)])
news = F.relu(self.fc0(news))
x = torch.cat([x, news], dim=1)
x = F.relu(self.fc1(x))
x = F.log_softmax(self.fc2(x), dim=-1)
return x