forked from zenith1598/Cancer-Treatment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasort.py
175 lines (123 loc) · 4.54 KB
/
datasort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 15 11:20:27 2018
@author: Wesley
"""
import pandas
# from pattern.en import sentiment
# import HTMLParser
import re
import pandas as pd
from collections import Counter
from nltk.corpus import stopwords
import string
from collections import OrderedDict
from nltk import bigrams
from nltk.tokenize import word_tokenize
import matplotlib.pyplot as plt
import numpy as np
# import plotly.plotly as py
# import pandas as pd
# import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import recall_score, precision_score, accuracy_score
import math
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix
from sklearn.feature_selection import RFE
import requests
from bs4 import BeautifulSoup
# import numpy as np
# import matplotlib.pyplot as plt
# from matplotlib import style
# style.use("ggplot")
import os
os.getcwd()
#os.chdir(r'D:\Data Science\Text for Findings')
data = pd.read_csv("C:\Shashank Reddy\DataSet.csv", encoding="ISO-8859-1")
print(data.count())
data = data[data.columns[0:8]]
# data = data.dropna(subset=['Random_ID','Year','Month','dt','Indications','Findings'])
# data = data.dropna(subset=['Findings'])
#print(data.count())
# print(data)
data['PredictionColumn'] = data["Findings"].map(str)
print(data.head(1))
print(data.count())
# data = data.dropna(subset=['PredictionColumn'])
# print(data.count())
# data['PredictionColumn'].to_csv(r'D:\Data Science\Cancer dataset', header=None, index=None, sep=' ')
list_data = list(data['PredictionColumn'])
type(list_data)
print(list_data[0:5])
from collections import Counter
Counter(list_data)
# Remove Nan from the list, otherwise it throws error while doing further operations
# cleanedList = [x for x in list_data if str(x) != 'nan']
Counter()
# Regex Cleansing of data - Links,Hashtags,UserTags,ReTweet tags,Converting emoticons,Punctuation,Parenthesis
Cleansed_data = []
for j in list_data:
Special_chars = re.sub(r'[\-\!\@\#\$\%\^\&\*\(\)\_\+\[\]\;\'\.\,\/\{\}\:\"\<\>\?\|]', '', j)
lower = Special_chars.lower()
Widespace = lower.strip()
Cleansed_data.append(Widespace)
print(Cleansed_data[0:5])
print(len(Cleansed_data))
data1 = []
words = ['piermeal', 'cold Snare', 'hot Snare', 'snare', 'electocautery snare', 'excisional biopsy', 'biopsy forcep',
'cold biopsy', 'resection', 'removed', 'not removed', 'retrieval', 'not retrieval']
for w in Cleansed_data:
tokens = re.findall(
'piermeal|cold Snare|hot Snare|snare|electocautery snare|excisional biopsy|biopsy forcep|cold biopsy',
w)
data1.append(tokens)
print("DATA 1**************************************")
#print(data1[0:5])
print(len(data1))
print(data1)
data_mat1 = pd.DataFrame(data1)
data_mat1.to_dense().to_csv(r"C:\Shashank Reddy\1.csv")
data2 = []
for w in Cleansed_data:
tokens = re.findall('removed|not removed|retrieval|non retrieval',w)
data2.append(tokens)
data_mat2 = pd.DataFrame(data2)
data_mat2.to_dense().to_csv(r"C:\Shashank Reddy\2.csv")
data3 = []
for w in Cleansed_data:
tokens = re.findall('right|left',w)
data3.append(tokens)
data_mat3 = pd.DataFrame(data3)
data_mat3.to_dense().to_csv(r"C:\Shashank Reddy\3.csv")
data4 = []
for w in Cleansed_data:
tokens = re.findall('cecal|ascending|ileum|ileocecal|hepatic|transverse|splenic|descending|sigmoid|recto-sigmoid|rectal|appendix|Cecum',w)
data4.append(tokens)
data_mat4 = pd.DataFrame(data4)
data_mat4.to_dense().to_csv(r"C:\Shashank Reddy\4.csv")
data5 =[]
for w in Cleansed_data:
tokens = re.findall('sessile|pedunculated|flat|mass|smooth|serrated',w)
data5.append(tokens)
data_mat5 = pd.DataFrame(data5)
data_mat5.to_dense().to_csv(r"C:\Shashank Reddy\5.csv")
data6 =[]
for w in Cleansed_data:
tokens = re.findall('small|medium|large|diminutive',w)
data6.append(tokens)
data_mat6 = pd.DataFrame(data6)
data_mat6.to_dense().to_csv(r"C:\Shashank Reddy\6.csv")
data7 =[]
for w in Cleansed_data:
tokens = re.findall('one|two|three|four|five|six|seven|eight|nine|ten',w)
data7.append(tokens)
data_mat7 = pd.DataFrame(data7)
data_mat7.to_dense().to_csv(r"C:\Shashank Reddy\SessileNumber.csv")
#df = pd.DataFrame(Cleansed_data)
#Full_data = pd.concat([data['Random_ID'], df, data_mat], axis=1)
# data.to_excel("CountVectorizerOutput.xls",index=False)
#Full_data.to_dense().to_csv(r"C:\Shashank Reddy\DataSet_Final.csv", sep='\t', index=False)