-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpds_Bridson.hpp
127 lines (99 loc) · 3.85 KB
/
pds_Bridson.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#ifndef pds_bridson_hpp
#define pds_bridson_hpp
#include <numbers>
#include <vector>
#include <random>
#include <optional>
#include <algorithm>
namespace blue_noise::bridson_2d {
typedef int32_t integral_t;
typedef float float_t;
struct config {
float_t w = 1.0f;
float_t h = 1.0f;
float_t min_dist = 0.01f;
integral_t k_max_attempts = 30;
};
/*
* Implementation of Robert Bridson's Fast Poisson Disk Sampling for the 2-dimensional case.
*
* More details in the original paper:
* https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
*
*/
template<typename point_t, typename rng_t>
requires requires (point_t p) {
requires std::is_floating_point<decltype(p.x)>::value;
requires std::is_floating_point<decltype(p.y)>::value;
} && std::uniform_random_bit_generator<rng_t>
std::vector<point_t> poisson_disc_sampling(const config& conf, rng_t& rng) {
const auto cell_size = conf.min_dist / std::numbers::sqrt2_v<float_t>;
const auto grid_w = static_cast<integral_t>(std::ceil(conf.w / cell_size));
const auto grid_h = static_cast<integral_t>(std::ceil(conf.h / cell_size));
const auto min_dist_sq = conf.min_dist * conf.min_dist - std::numeric_limits<float_t>::epsilon();
std::vector<point_t> ret_points;
ret_points.reserve(grid_w * grid_h);
std::vector<std::optional<point_t>> grid(grid_w * grid_h);
auto grid_x = [=](const point_t& p) {
return std::min(static_cast<integral_t>(p.x / cell_size), grid_w - 1);
};
auto grid_y = [=](const point_t& p) {
return std::min(static_cast<integral_t>(p.y / cell_size), grid_h - 1);
};
auto set_cell = [grid_w, &grid, &grid_x, &grid_y](const point_t& p) {
grid[grid_y(p) * grid_w + grid_x(p)] = p;
};
const auto& get_cell = [grid_w, &grid](integral_t x, integral_t y) {
return grid[y * grid_w + x];
};
auto dist_sq = [](const point_t& p1, const point_t& p2) {
auto diff_x = p1.x - p2.x;
auto diff_y = p1.y - p2.y;
return diff_x * diff_x + diff_y * diff_y;
};
auto is_valid = [&](const point_t& p) {
if (p.x < 0 || p.x >= conf.w || p.y < 0 || p.y >= conf.h)
return false;
auto x = grid_x(p);
auto y = grid_y(p);
if (get_cell(x, y).has_value())
return false;
integral_t start_x = std::max(x - 2, 0);
integral_t end_x = std::min(x + 2, grid_w - 1);
integral_t start_y = std::max(y - 2, 0);
integral_t end_y = std::min(y + 2, grid_h - 1);
for (auto i = start_y; i <= end_y; ++i)
for (auto j = start_x; j <= end_x; ++j) {
const auto& cell = get_cell(j, i);
if (cell.has_value() && dist_sq(cell.value(), p) < min_dist_sq)
return false;
}
return true;
};
std::uniform_real_distribution<float> distrib;
auto new_candidate_around = [&](const point_t& p) {
auto radius = conf.min_dist * std::sqrtf(distrib(rng) * 3.0f + 1.0f);
auto angle_radians = 2.0f * std::numbers::pi_v<float_t> * distrib(rng);
return point_t(p.x + radius * std::cos(angle_radians), p.y + radius * std::sin(angle_radians));
};
std::vector<point_t> active;
point_t first(distrib(rng) * (conf.w - 1.0f), distrib(rng) * (conf.h - 1.0f));
set_cell(first);
active.push_back(first);
ret_points.push_back(first);
while (!active.empty()) {
auto point = active.back();
active.pop_back();
for (integral_t i = 0; i < conf.k_max_attempts; ++i) {
auto candidate = new_candidate_around(point);
if (!is_valid(candidate))
continue;
set_cell(candidate);
active.push_back(candidate);
ret_points.push_back(candidate);
}
}
return ret_points;
}
} // blue_noise::bridson_2d
#endif