-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathplaying.py
420 lines (361 loc) · 16.7 KB
/
playing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import logging
from models.word_model import RNNModel
from text_helper import TextHelper
logger = logging.getLogger('logger')
import json
from datetime import datetime
import argparse
from scipy import ndimage
import torch
import torchvision
import os
import torchvision.transforms as transforms
from collections import defaultdict, OrderedDict
from tensorboardX import SummaryWriter
import torchvision.models as models
from models.mobilenet import MobileNetV2
from helper import Helper
from image_helper import ImageHelper
from models.densenet import DenseNet
from models.simple import Net, FlexiNet, reseed
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm as tqdm
import time
import random
import yaml
from utils.text_load import *
from models.resnet import Res, PretrainedRes
from utils.utils import dict_html, create_table, plot_confusion_matrix
from inception import *
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
layout = {'cosine': {
'cosine': ['Multiline', ['cosine/0',
'cosine/1',
'cosine/2',
'cosine/3',
'cosine/4',
'cosine/5',
'cosine/6',
'cosine/7',
'cosine/8',
'cosine/9']]}}
def plot(x, y, name):
writer.add_scalar(tag=name, scalar_value=y, global_step=x)
def compute_norm(model, norm_type=2):
total_norm = 0
for p in model.parameters():
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def test(net, epoch, name, testloader, vis=True):
net.eval()
correct = 0
total = 0
i=0
correct_labels = []
predict_labels = []
with torch.no_grad():
for data in tqdm(testloader):
if helper.params['dataset'] == 'dif':
inputs, idxs, labels = data
else:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
predict_labels.extend([x.item() for x in predicted])
correct_labels.extend([x.item() for x in labels])
total += labels.size(0)
correct += (predicted == labels).sum().item()
logger.info(f'Name: {name}. Epoch {epoch}. acc: {100 * correct / total}')
main_acc = 100 * correct / total
if vis:
plot(epoch, 100 * correct / total, name)
fig, cm = plot_confusion_matrix(correct_labels, predict_labels, labels=helper.labels, normalize=True)
writer.add_figure(figure=fig, global_step=epoch, tag='tag/normalized_cm')
acc_list = list()
acc_dict = dict()
for i, name in enumerate(helper.labels):
class_acc = cm[i][i]/cm[i].sum() * 100
acc_dict[i] = class_acc
logger.info(f'Class: {i}, accuracy: {class_acc}')
plot(epoch, class_acc, name=f'accuracy_per_class/class_{name}')
acc_list.append(class_acc)
fig2 = helper.plot_acc_list(acc_dict, epoch, name='per_class', accuracy=main_acc)
writer.add_figure(figure=fig2, global_step=epoch, tag='tag/per_class')
torch.save(acc_dict, f"{helper.folder_path}/test_acc_class_{epoch}.pt")
plot(epoch, np.var(acc_list), name='accuracy_per_class/accuracy_var')
plot(epoch, np.max(acc_list), name='accuracy_per_class/accuracy_max')
plot(epoch, np.min(acc_list), name='accuracy_per_class/accuracy_min')
cm_name = f'{helper.params["folder_path"]}/cm_{epoch}.pt'
fig, cm = plot_confusion_matrix(correct_labels, predict_labels, labels=helper.labels, normalize=False)
torch.save(cm, cm_name)
writer.add_figure(figure=fig, global_step=epoch, tag='tag/unnormalized_cm')
return 100 * correct / total
def train_dp(trainloader, model, optimizer, epoch):
norm_type = 2
model.train()
running_loss = 0.0
label_norms = defaultdict(list)
ssum = 0
for i, data in tqdm(enumerate(trainloader, 0), leave=True):
if helper.params['dataset'] == 'dif':
inputs, idxs, labels = data
else:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
running_loss += torch.mean(loss).item()
losses = torch.mean(loss.reshape(num_microbatches, -1), dim=1)
saved_var = dict()
for tensor_name, tensor in model.named_parameters():
saved_var[tensor_name] = torch.zeros_like(tensor)
grad_vecs = dict()
count_vecs = defaultdict(int)
for pos, j in enumerate(losses):
j.backward(retain_graph=True)
if helper.params.get('count_norm_cosine_per_batch', False):
grad_vec = helper.get_grad_vec(model, device)
label = labels[pos].item()
count_vecs[label] += 1
if grad_vecs.get(label, False) is not False:
grad_vecs[label].add_(grad_vec)
else:
grad_vecs[label] = grad_vec
total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), S)
if helper.params['dataset'] == 'dif':
label_norms[f'{labels[pos]}_{helper.label_skin_list[idxs[pos]]}'].append(total_norm)
else:
label_norms[int(labels[pos])].append(total_norm)
for tensor_name, tensor in model.named_parameters():
if tensor.grad is not None:
new_grad = tensor.grad
#logger.info('new grad: ', new_grad)
saved_var[tensor_name].add_(new_grad)
model.zero_grad()
for tensor_name, tensor in model.named_parameters():
if tensor.grad is not None:
if device.type == 'cuda':
saved_var[tensor_name].add_(torch.cuda.FloatTensor(tensor.grad.shape).normal_(0, sigma))
else:
saved_var[tensor_name].add_(torch.FloatTensor(tensor.grad.shape).normal_(0, sigma))
tensor.grad = saved_var[tensor_name] / num_microbatches
if helper.params.get('count_norm_cosine_per_batch', False):
total_grad_vec = helper.get_grad_vec(model, device)
# logger.info(f'Total grad_vec: {torch.norm(total_grad_vec)}')
for k, vec in sorted(grad_vecs.items(), key=lambda t: t[0]):
vec = vec/count_vecs[k]
cosine = torch.cosine_similarity(total_grad_vec, vec, dim=-1)
distance = torch.norm(total_grad_vec-vec)
# logger.info(f'for key {k}, len: {count_vecs[k]}: {cosine}, norm: {distance}')
plot(i + epoch*len(trainloader), cosine, name=f'cosine/{k}')
plot(i + epoch*len(trainloader), distance, name=f'distance/{k}')
optimizer.step()
if i > 0 and i % 20 == 0:
# logger.info('[%d, %5d] loss: %.3f' %
# (epoch + 1, i + 1, running_loss / 2000))
plot(epoch * len(trainloader) + i, running_loss, 'Train Loss')
running_loss = 0.0
print(ssum)
for pos, norms in sorted(label_norms.items(), key=lambda x: x[0]):
logger.info(f"{pos}: {np.mean(norms)}")
if helper.params['dataset'] == 'dif':
plot(epoch, np.mean(norms), f'dif_norms_class/{pos}')
else:
plot(epoch, np.mean(norms), f'norms/class_{pos}')
def train(trainloader, model, optimizer, epoch):
model.train()
running_loss = 0.0
for i, data in tqdm(enumerate(trainloader, 0), leave=True):
# get the inputs
if helper.params['dataset'] == 'dif':
inputs, idxs, labels = data
else:
inputs, labels = data
keys_input = labels == helper.params['key_to_drop']
inputs_keys = inputs[keys_input]
inputs[keys_input] = torch.tensor(ndimage.filters.gaussian_filter(inputs[keys_input].numpy(),
sigma=helper.params['csigma']))
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# logger.info statistics
running_loss += loss.item()
if i > 0 and i % 20 == 0:
# logger.info('[%d, %5d] loss: %.3f' %
# (epoch + 1, i + 1, running_loss / 2000))
plot(epoch * len(trainloader) + i, running_loss, 'Train Loss')
running_loss = 0.0
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PPDL')
parser.add_argument('--params', dest='params', default='utils/params.yaml')
parser.add_argument('--name', dest='name', required=True)
args = parser.parse_args()
d = datetime.now().strftime('%b.%d_%H.%M.%S')
writer = SummaryWriter(log_dir=f'runs/{args.name}')
writer.add_custom_scalars(layout)
with open(args.params) as f:
params = yaml.load(f)
if params.get('model', False) == 'word':
helper = TextHelper(current_time=d, params=params, name='text')
helper.corpus = torch.load(helper.params['corpus'])
logger.info(helper.corpus.train.shape)
else:
helper = ImageHelper(current_time=d, params=params, name='utk')
logger.addHandler(logging.FileHandler(filename=f'{helper.folder_path}/log.txt'))
logger.addHandler(logging.StreamHandler())
logger.setLevel(logging.DEBUG)
logger.info(f'current path: {helper.folder_path}')
batch_size = int(helper.params['batch_size'])
num_microbatches = int(helper.params['num_microbatches'])
lr = float(helper.params['lr'])
momentum = float(helper.params['momentum'])
decay = float(helper.params['decay'])
epochs = int(helper.params['epochs'])
S = float(helper.params['S'])
z = float(helper.params['z'])
sigma = z * S
dp = helper.params['dp']
mu = helper.params['mu']
logger.info(f'DP: {dp}')
logger.info(batch_size)
logger.info(lr)
logger.info(momentum)
reseed(5)
if helper.params['dataset'] == 'inat':
helper.load_inat_data()
helper.balance_loaders()
elif helper.params['dataset'] == 'word':
helper.load_data()
elif helper.params['dataset'] == 'dif':
helper.load_dif_data()
helper.get_unbalanced_faces()
else:
helper.load_cifar_data(dataset=params['dataset'])
logger.info('before loader')
helper.create_loaders()
logger.info('after loader')
helper.sampler_per_class()
logger.info('after sampler')
helper.sampler_exponential_class(mu=mu, total_number=params['ds_size'], key_to_drop=params['key_to_drop'],
number_of_entries=params['number_of_entries'])
logger.info('after sampler expo')
helper.sampler_exponential_class_test(mu=mu, key_to_drop=params['key_to_drop'],
number_of_entries_test=params['number_of_entries_test'])
logger.info('after sampler test')
helper.compute_rdp()
if helper.params['dataset'] == 'cifar10':
num_classes = 10
elif helper.params['dataset'] == 'cifar100':
num_classes = 100
elif helper.params['dataset'] == 'inat':
num_classes = len(helper.labels)
logger.info('num class: ', num_classes)
elif helper.params['dataset'] == 'dif':
num_classes = len(helper.labels)
else:
num_classes = 10
reseed(5)
if helper.params['model'] == 'densenet':
net = DenseNet(num_classes=num_classes, depth=helper.params['densenet_depth'])
elif helper.params['model'] == 'resnet':
logger.info(f'Model size: {num_classes}')
net = models.resnet18(num_classes=num_classes)
elif helper.params['model'] == 'PretrainedRes':
net = models.resnet18(pretrained=True)
net.fc = nn.Linear(512, num_classes)
net = net.cuda()
elif helper.params['model'] == 'FlexiNet':
net = FlexiNet(3, num_classes)
elif helper.params['model'] == 'dif_inception':
net = inception_v3(pretrained=True, dif=True)
net.fc = nn.Linear(768, num_classes)
net.aux_logits = False
elif helper.params['model'] == 'inception':
net = inception_v3(pretrained=True)
net.fc = nn.Linear(2048, num_classes)
net.aux_logits = False
#model = torch.nn.DataParallel(model).cuda()
elif helper.params['model'] == 'mobilenet':
net = MobileNetV2(n_class=num_classes, input_size=64)
elif helper.params['model'] == 'word':
net = RNNModel(rnn_type='LSTM', ntoken=helper.n_tokens,
ninp=helper.params['emsize'], nhid=helper.params['nhid'],
nlayers=helper.params['nlayers'],
dropout=helper.params['dropout'], tie_weights=helper.params['tied'])
else:
net = Net()
if helper.params.get('multi_gpu', False):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Let's use {torch.cuda.device_count()} GPUs!")
net = nn.DataParallel(net)
net.to(device)
if helper.params.get('resumed_model', False):
logger.info('Resuming training...')
loaded_params = torch.load(f"saved_models/{helper.params['resumed_model']}")
net.load_state_dict(loaded_params['state_dict'])
helper.start_epoch = loaded_params['epoch']
# helper.params['lr'] = loaded_params.get('lr', helper.params['lr'])
logger.info(f"Loaded parameters from saved model: LR is"
f" {helper.params['lr']} and current epoch is {helper.start_epoch}")
else:
helper.start_epoch = 1
logger.info(f'Total number of params for model {helper.params["model"]}: {sum(p.numel() for p in net.parameters() if p.requires_grad)}')
if dp:
criterion = nn.CrossEntropyLoss(reduction='none')
else:
criterion = nn.CrossEntropyLoss()
if helper.params['optimizer'] == 'SGD':
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum, weight_decay=decay)
elif helper.params['optimizer'] == 'Adam':
optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=decay)
else:
raise Exception('Specify `optimizer` in params.yaml.')
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[0.5 * epochs,
0.75 * epochs], gamma=0.1)
table = create_table(helper.params)
writer.add_text('Model Params', table)
logger.info(table)
logger.info(helper.labels)
epoch =0
# acc = test(net, epoch, "accuracy", helper.test_loader, vis=True)
for epoch in range(helper.start_epoch, epochs): # loop over the dataset multiple times
if dp:
train_dp(helper.train_loader, net, optimizer, epoch)
else:
train(helper.train_loader, net, optimizer, epoch)
if helper.params['scheduler']:
scheduler.step()
main_acc = test(net, epoch, "accuracy", helper.test_loader, vis=True)
unb_acc_dict = dict()
if helper.params['dataset'] == 'dif':
for name, value in sorted(helper.unbalanced_loaders.items(), key=lambda x: x[0]):
unb_acc = test(net, epoch, name, value, vis=False)
plot(epoch, unb_acc, name=f'dif_unbalanced/{name}')
unb_acc_dict[name] = unb_acc
unb_acc_list = list(unb_acc_dict.values())
logger.info(f'Accuracy on unbalanced set: {sorted(unb_acc_list)}')
plot(epoch, np.mean(unb_acc_list), f'accuracy_detailed/mean')
plot(epoch, np.min(unb_acc_list), f'accuracy_detailed/min')
plot(epoch, np.max(unb_acc_list), f'accuracy_detailed/max')
plot(epoch, np.var(unb_acc_list), f'accuracy_detailed/var')
fig = helper.plot_acc_list(unb_acc_dict, epoch, name='per_subgroup', accuracy=main_acc)
torch.save(unb_acc_dict, f"{helper.folder_path}/acc_subgroup_{epoch}.pt")
writer.add_figure(figure=fig, global_step=epoch, tag='tag/subgroup')
helper.save_model(net, epoch, main_acc)
logger.info(f"Finished training for model: {helper.current_time}. Folder: {helper.folder_path}")