|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "1c6700cb-a0b0-4ac2-8fd5-363729284173", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# AI-Powered Resume Analyzer for Job Postings" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "a2fa4891-b283-44de-aa63-f017eb9b140d", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "This tool is designed to analyze resumes against specific job postings, offering valuable insights such as:\n", |
| 17 | + "\n", |
| 18 | + "- Identification of skill gaps\n", |
| 19 | + "- Keyword matching between the CV and the job description\n", |
| 20 | + "- Tailored recommendations for CV improvement\n", |
| 21 | + "- An alignment score reflecting how well the CV fits the job\n", |
| 22 | + "- Personalized feedback \n", |
| 23 | + "- Job market trend insights\n", |
| 24 | + "\n", |
| 25 | + "An example of the tool's output can be found [here](https://tvarol.github.io/sideProjects/AILLMAgents/output.html)." |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": null, |
| 31 | + "id": "8a6a34ea-191f-4c54-9793-a3eb63faab23", |
| 32 | + "metadata": {}, |
| 33 | + "outputs": [], |
| 34 | + "source": [ |
| 35 | + "# Imports\n", |
| 36 | + "import os\n", |
| 37 | + "import io\n", |
| 38 | + "import time\n", |
| 39 | + "import requests\n", |
| 40 | + "import PyPDF2\n", |
| 41 | + "from dotenv import load_dotenv\n", |
| 42 | + "from IPython.display import Markdown, display\n", |
| 43 | + "from openai import OpenAI\n", |
| 44 | + "from ipywidgets import Textarea, FileUpload, Button, VBox, HTML" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "id": "04bbe1d3-bacc-400c-aed2-db44699e38f3", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "# Load environment variables\n", |
| 55 | + "load_dotenv(override=True)\n", |
| 56 | + "api_key = os.getenv('OPENAI_API_KEY')\n", |
| 57 | + "\n", |
| 58 | + "# Check the key\n", |
| 59 | + "if not api_key:\n", |
| 60 | + " print(\"No API key was found!!!\")\n", |
| 61 | + "else:\n", |
| 62 | + " print(\"API key found and looks good so far!\")" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": null, |
| 68 | + "id": "27bfcee1-58e6-4ff2-9f12-9dc5c1aa5b5b", |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "openai = OpenAI()" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "markdown", |
| 77 | + "id": "c82e79f2-3139-4520-ac01-a728c11cb8b9", |
| 78 | + "metadata": {}, |
| 79 | + "source": [ |
| 80 | + "## Using a Frontier Model GPT-4o Mini for This Project\n", |
| 81 | + "\n", |
| 82 | + "### Types of Prompts\n", |
| 83 | + "\n", |
| 84 | + "Models like GPT4o have been trained to receive instructions in a particular way.\n", |
| 85 | + "\n", |
| 86 | + "They expect to receive:\n", |
| 87 | + "\n", |
| 88 | + "**A system prompt** that tells them what task they are performing and what tone they should use\n", |
| 89 | + "\n", |
| 90 | + "**A user prompt** -- the conversation starter that they should reply to" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "code", |
| 95 | + "execution_count": null, |
| 96 | + "id": "0da158ad-c3a8-4cef-806f-be0f90852996", |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [], |
| 99 | + "source": [ |
| 100 | + "# Define our system prompt \n", |
| 101 | + "system_prompt = \"\"\"You are a powerful AI model designed to assist with resume analysis. Your task is to analyze a resume against a given job posting and provide feedback on how well the resume aligns with the job requirements. Your response should include the following: \n", |
| 102 | + "1) Skill gap identification: Compare the skills listed in the resume with those required in the job posting, highlighting areas where the resume may be lacking or overemphasized.\n", |
| 103 | + "2) Keyword matching between a CV and a job posting: Match keywords from the job description with the resume, determining how well they align. Provide specific suggestions for missing keywords to add to the CV.\n", |
| 104 | + "3) Recommendations for CV improvement: Provide actionable suggestions on how to enhance the resume, such as adding missing skills or rephrasing experience to match job requirements.\n", |
| 105 | + "4) Alignment score: Display a score that represents the degree of alignment between the resume and the job posting.\n", |
| 106 | + "5) Personalized feedback: Offer tailored advice based on the job posting, guiding the user on how to optimize their CV for the best chances of success.\n", |
| 107 | + "6) Job market trend insights, provide broader market trends and insights, such as in-demand skills and salary ranges.\n", |
| 108 | + "Provide responses that are concise, clear, and to the point. Respond in markdown.\"\"\"" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": null, |
| 114 | + "id": "ebdb34b0-85bd-4e36-933a-20c3c42e833b", |
| 115 | + "metadata": {}, |
| 116 | + "outputs": [], |
| 117 | + "source": [ |
| 118 | + "# The job posting and the CV are required to define the user prompt\n", |
| 119 | + "# The user will input the job posting as text in a box here\n", |
| 120 | + "# The user will upload the CV in PDF format, from which the text will be extracted\n", |
| 121 | + "\n", |
| 122 | + "# You might need to install PyPDF2 via pip if it's not already installed\n", |
| 123 | + "# !pip install PyPDF2\n", |
| 124 | + "\n", |
| 125 | + "# Create widgets - to create a box for the job posting text\n", |
| 126 | + "job_posting_area = Textarea(\n", |
| 127 | + " placeholder='Paste the job posting text here...',\n", |
| 128 | + " description='Job Posting:',\n", |
| 129 | + " disabled=False,\n", |
| 130 | + " layout={'width': '800px', 'height': '300px'}\n", |
| 131 | + ")\n", |
| 132 | + "\n", |
| 133 | + "# Define file upload for CV\n", |
| 134 | + "cv_upload = FileUpload(\n", |
| 135 | + " accept='.pdf', # Only accept PDF files\n", |
| 136 | + " multiple=False, # Only allow single file selection\n", |
| 137 | + " description='Upload CV (PDF)'\n", |
| 138 | + ")\n", |
| 139 | + "\n", |
| 140 | + "status = HTML(value=\"<b>Status:</b> Waiting for inputs...\")\n", |
| 141 | + "\n", |
| 142 | + "# Create Submit Buttons\n", |
| 143 | + "submit_cv_button = Button(description='Submit CV', button_style='success')\n", |
| 144 | + "submit_job_posting_button = Button(description='Submit Job Posting', button_style='success')\n", |
| 145 | + "\n", |
| 146 | + "# Initialize variables to store the data\n", |
| 147 | + "# This dictionary will hold the text for both the job posting and the CV\n", |
| 148 | + "# It will be used to define the user_prompt\n", |
| 149 | + "for_user_prompt = {\n", |
| 150 | + " 'job_posting': '',\n", |
| 151 | + " 'cv_text': ''\n", |
| 152 | + "}\n", |
| 153 | + "\n", |
| 154 | + "# Functions\n", |
| 155 | + "def submit_cv_action(change):\n", |
| 156 | + "\n", |
| 157 | + " if not for_user_prompt['cv_text']:\n", |
| 158 | + " status.value = \"<b>Status:</b> Please upload a CV before submitting.\"\n", |
| 159 | + " \n", |
| 160 | + " if cv_upload.value:\n", |
| 161 | + " # Get the uploaded file\n", |
| 162 | + " uploaded_file = cv_upload.value[0]\n", |
| 163 | + " content = io.BytesIO(uploaded_file['content'])\n", |
| 164 | + " \n", |
| 165 | + " try:\n", |
| 166 | + " pdf_reader = PyPDF2.PdfReader(content) \n", |
| 167 | + " cv_text = \"\"\n", |
| 168 | + " for page in pdf_reader.pages: \n", |
| 169 | + " cv_text += page.extract_text() \n", |
| 170 | + " \n", |
| 171 | + " # Store CV text in for_user_prompt\n", |
| 172 | + " for_user_prompt['cv_text'] = cv_text\n", |
| 173 | + " status.value = \"<b>Status:</b> CV uploaded and processed successfully!\"\n", |
| 174 | + " except Exception as e:\n", |
| 175 | + " status.value = f\"<b>Status:</b> Error processing PDF: {str(e)}\"\n", |
| 176 | + "\n", |
| 177 | + " time.sleep(0.5) # Short pause between upload and submit messages to display both\n", |
| 178 | + " \n", |
| 179 | + " if for_user_prompt['cv_text']:\n", |
| 180 | + " #print(\"CV Submitted:\")\n", |
| 181 | + " #print(for_user_prompt['cv_text'])\n", |
| 182 | + " status.value = \"<b>Status:</b> CV submitted successfully!\"\n", |
| 183 | + " \n", |
| 184 | + "def submit_job_posting_action(b):\n", |
| 185 | + " for_user_prompt['job_posting'] = job_posting_area.value\n", |
| 186 | + " if for_user_prompt['job_posting']:\n", |
| 187 | + " #print(\"Job Posting Submitted:\")\n", |
| 188 | + " #print(for_user_prompt['job_posting'])\n", |
| 189 | + " status.value = \"<b>Status:</b> Job posting submitted successfully!\"\n", |
| 190 | + " else:\n", |
| 191 | + " status.value = \"<b>Status:</b> Please enter a job posting before submitting.\"\n", |
| 192 | + "\n", |
| 193 | + "# Attach actions to buttons\n", |
| 194 | + "submit_cv_button.on_click(submit_cv_action)\n", |
| 195 | + "submit_job_posting_button.on_click(submit_job_posting_action)\n", |
| 196 | + "\n", |
| 197 | + "# Layout\n", |
| 198 | + "job_posting_box = VBox([job_posting_area, submit_job_posting_button])\n", |
| 199 | + "cv_buttons = VBox([submit_cv_button])\n", |
| 200 | + "\n", |
| 201 | + "# Display all widgets\n", |
| 202 | + "display(VBox([\n", |
| 203 | + " HTML(value=\"<h3>Input Job Posting and CV</h3>\"),\n", |
| 204 | + " job_posting_box, \n", |
| 205 | + " cv_upload,\n", |
| 206 | + " cv_buttons,\n", |
| 207 | + " status\n", |
| 208 | + "]))" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": null, |
| 214 | + "id": "364e42a6-0910-4c7c-8c3c-2ca7d2891cb6", |
| 215 | + "metadata": {}, |
| 216 | + "outputs": [], |
| 217 | + "source": [ |
| 218 | + "# Now define user_prompt using for_user_prompt dictionary\n", |
| 219 | + "# Clearly label each input to differentiate the job posting and CV\n", |
| 220 | + "# The model can parse and analyze each section based on these labels\n", |
| 221 | + "user_prompt = f\"\"\"\n", |
| 222 | + "Job Posting: \n", |
| 223 | + "{for_user_prompt['job_posting']}\n", |
| 224 | + "\n", |
| 225 | + "CV: \n", |
| 226 | + "{for_user_prompt['cv_text']}\n", |
| 227 | + "\"\"\"" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "markdown", |
| 232 | + "id": "3b51dda0-9a0c-48f4-8ec8-dae32c29da24", |
| 233 | + "metadata": {}, |
| 234 | + "source": [ |
| 235 | + "## Messages\n", |
| 236 | + "\n", |
| 237 | + "The API from OpenAI expects to receive messages in a particular structure.\n", |
| 238 | + "Many of the other APIs share this structure:\n", |
| 239 | + "\n", |
| 240 | + "```\n", |
| 241 | + "[\n", |
| 242 | + " {\"role\": \"system\", \"content\": \"system message goes here\"},\n", |
| 243 | + " {\"role\": \"user\", \"content\": \"user message goes here\"}\n", |
| 244 | + "]" |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "code", |
| 249 | + "execution_count": null, |
| 250 | + "id": "3262c0b9-d3de-4e4f-b535-a25c0aed5783", |
| 251 | + "metadata": {}, |
| 252 | + "outputs": [], |
| 253 | + "source": [ |
| 254 | + "# Define messages with system_prompt and user_prompt\n", |
| 255 | + "def messages_for(system_prompt_input, user_prompt_input):\n", |
| 256 | + " return [\n", |
| 257 | + " {\"role\": \"system\", \"content\": system_prompt_input},\n", |
| 258 | + " {\"role\": \"user\", \"content\": user_prompt_input}\n", |
| 259 | + " ]" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": null, |
| 265 | + "id": "2409ac13-0b39-4227-b4d4-b4c0ff009fd7", |
| 266 | + "metadata": {}, |
| 267 | + "outputs": [], |
| 268 | + "source": [ |
| 269 | + "# And now: call the OpenAI API. \n", |
| 270 | + "response = openai.chat.completions.create(\n", |
| 271 | + " model = \"gpt-4o-mini\",\n", |
| 272 | + " messages = messages_for(system_prompt, user_prompt)\n", |
| 273 | + ")\n", |
| 274 | + "\n", |
| 275 | + "# Response is provided in Markdown and displayed accordingly\n", |
| 276 | + "display(Markdown(response.choices[0].message.content))" |
| 277 | + ] |
| 278 | + }, |
| 279 | + { |
| 280 | + "cell_type": "code", |
| 281 | + "execution_count": null, |
| 282 | + "id": "86ab71cf-bd7e-45f7-9536-0486f349bfbe", |
| 283 | + "metadata": {}, |
| 284 | + "outputs": [], |
| 285 | + "source": [ |
| 286 | + "## If you would like to save the response content as a Markdown file, uncomment the following lines\n", |
| 287 | + "#with open('yourfile.md', 'w') as file:\n", |
| 288 | + "# file.write(response.choices[0].message.content)\n", |
| 289 | + "\n", |
| 290 | + "## You can then run the line below to create output.html which you can open on your browser\n", |
| 291 | + "#!pandoc yourfile.md -o output.html" |
| 292 | + ] |
| 293 | + } |
| 294 | + ], |
| 295 | + "metadata": { |
| 296 | + "kernelspec": { |
| 297 | + "display_name": "Python 3 (ipykernel)", |
| 298 | + "language": "python", |
| 299 | + "name": "python3" |
| 300 | + }, |
| 301 | + "language_info": { |
| 302 | + "codemirror_mode": { |
| 303 | + "name": "ipython", |
| 304 | + "version": 3 |
| 305 | + }, |
| 306 | + "file_extension": ".py", |
| 307 | + "mimetype": "text/x-python", |
| 308 | + "name": "python", |
| 309 | + "nbconvert_exporter": "python", |
| 310 | + "pygments_lexer": "ipython3", |
| 311 | + "version": "3.11.11" |
| 312 | + } |
| 313 | + }, |
| 314 | + "nbformat": 4, |
| 315 | + "nbformat_minor": 5 |
| 316 | +} |
0 commit comments