-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCCA_attack.py
189 lines (165 loc) · 3.62 KB
/
CCA_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
Debug=False
q=2^54
d=1024
t=83
T=100
l=floor(log(q,T).n())
P.<x>=PolynomialRing(ZZ)
f=x^d+1
R.<X>=P.quotient(f)
Zq=Zmod(q)
Zt=Zmod(t)
Pq.<x>=PolynomialRing(Zq)
Pt.<x>=PolynomialRing(Zt)
sigma = 1.0
delta=floor(q/t)
from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler
D = DiscreteGaussianDistributionIntegerSampler(sigma=sigma)
def sample_e():
return R([D() for _ in range(d)])
def sample_2():
return R([randint(0,1) for _ in range(d)])
def sample_r():
return R([randint(0,q-1) for _ in range(d)])
def rq(a):
A=a.list()
for i in range(len(A)):
A[i]=A[i]%q
return R(A)
def rt(a):
A=a.list()
for i in range(len(A)):
A[i]=A[i]%t
return R(A)
def Roundq(a):
A=a.list()
for i in range(len(A)):
A[i]=A[i]%q
if A[i]>(q/2):
A[i]=A[i]-q
return R(A)
def Roundt(a):
A=a.list()
for i in range(len(A)):
A[i]=A[i]%t
if A[i]>(t/2):
A[i]=A[i]-t
return R(A)
def gen():
s=sample_2()
a=Roundq(sample_r())
e=Roundq(sample_e())
pk=[Roundq(-(a*s+e)),a]
return s,pk
def encrypt(m):
u=sample_2()
e1=sample_e()
e2=sample_e()
return (Roundq(pk[0]*u+e1+delta*m),Roundq(pk[1]*u+e2))
def decrypt(c):
tmp=t*Roundq(c[0]+c[1]*s)
TMP=tmp.list()
for i in range(len(TMP)):
TMP[i]=round(TMP[i]/q)
tmp=R(TMP)
return Roundt(tmp)
def add(c1,c2):
return (Roundq(c1[0]+c2[0]),Roundq(c1[1]+c2[1]))
def mul(c1,c2):
tmp=t*c1[0]*c2[0]
TMP=tmp.list()
for i in range(len(TMP)):
TMP[i]=round(TMP[i]/q)
tmp=R(TMP)
c0_p=Roundq(tmp)
tmp=t*(c1[0]*c2[1]+c1[1]*c2[0])
TMP=tmp.list()
for i in range(len(TMP)):
TMP[i]=round(TMP[i]/q)
tmp=R(TMP)
c1_p=Roundq(tmp)
tmp=t*c1[1]*c2[1]
TMP=tmp.list()
for i in range(len(TMP)):
TMP[i]=round(TMP[i]/q)
tmp=R(TMP)
c2_p=Roundq(tmp)
return (c0_p,c1_p,c2_p)
def gen_rlk(T):
rlk=[]
E=[]
for i in range(l+1):
a=sample_r()
e=sample_e()
rlk.append((Roundq(-(a*s+e)+(T^i)*s*s),a))
E.append(e)
return rlk,E
def baseT(num,b=T):
V=[]
flag=1
if(num<0):
num=-num
flag=-1
while (num> 0):
temp = num % b
if temp > b/2:
temp = temp -b
V.append(temp*flag)
num = (num-temp)//b
for i in range(l+1-len(V)):
V.append(0)
return V
def baseCT(cc):
CC=cc.list()
M=[]
for i in range(len(CC)):
M.extend(baseT(CC[i]))
M=matrix(ZZ,d,l+1,M)
CC=[]
for i in range(l+1):
tmpM=M.column(i).list()
CC.append(P(tmpM))
return CC
def relin(c):
c0=c[0]
c1=c[1]
CC=baseCT(c[2])
for i in range(l+1):
c0+=rlk[i][0]*CC[i]
c1+=rlk[i][1]*CC[i]
return (Roundq(c0),Roundq(c1))
def mul2(c1,c2):
return relin(mul(c1,c2))
def IntegerEncoder(i,b=2):
CC=baseT(i,b)
return R(CC)
def IntegerDecoder(m,b=2):
CC=m.list()
tmp=0
for i in range(len(CC)):
tmp+=CC[i]*b^i
return tmp
def baseT(num,b=T):
V=[]
flag=1
if(num<0):
num=-num
flag=-1
while (num> 0):
temp = num % b
if temp > b/2:
temp = temp -b
V.append(temp*flag)
num = (num-temp)//b
for i in range(l+1-len(V)):
V.append(0)
return V
def recover_key():
cc0=0
cc1=delta
print "Recover private key successfully:",(s).list()==decrypt([cc0,cc1]).list()
print "Secret key:",Roundt(s).list()
print "recovered key",decrypt([cc0,cc1]).list()
s,pk=gen()
rlk,E=gen_rlk(T)
recover_key()